
Copyright © 2013 The Authors

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

Content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s)

When referring to this work, full bibliographic details must be given

http://eprints.gla.ac.uk/83932

Deposited on: 02 August 2013
Fabrication of Integrated Planar Gunn Diode and Micro-cooler on GaAs Substrate

Ata Khalid1, James Glover2, Richard Hopper2, Vasileios Papageorgiou1, Miguel Montes3, Martin Kuball3, Geoff Dunn4, Alex Stephen4, Chris Oxley2 and David R. S. Cumming1

1School of Engineering, University of Glasgow, UK
2De Montfort University
3University of Bristol
4University of Aberdeen
ata.khalid@glasgow.ac.uk

Abstract—We demonstrate fabrication of an integrated micro cooler with the planar Gunn diode and characterise its performance. First experimental results have shown a small cooling at the surface of the micro cooler. This is first demonstration of an integrated micro-cooler with a planar Gunn diode.

Keywords—micro cooler; Gunn diode; thermionic cooler;

I. INTRODUCTION

Planar Gunn diodes with GaAs/AlGaAs heterojunctions have successfully demonstrated oscillation in the transit-time fundamental mode at 108 GHz [1]. Numerical simulation based on a self-consistent Monte Carlo method has shown the mechanics of Gunn domain formation and transport in such devices [2]. These novel devices have great potential as integrated millimeter-wave or terahertz signal sources. This is because the lithographically determine device anode and cathode spacing L_{ac} and can be reduced to sub-micrometer dimensions to yield higher frequency of transit-time mode oscillation [3]. The reduction is L_{ac} has to scale with higher doping level to achieve smaller domain size. This directly results in an increase in electron current density in these devices, significantly increasing the heat generated in the channel leading to increased operating junction temperature of the device. High junction temperature will contribute to increased scattering in the channel and reduced electron velocity, increased noise as well as lower impact ionisation threshold. The early onset of impact ionisation would result in early device failure. Also, GaAs is known to have poor thermal conductivity compared to silicon (Si), which means passive heat removal would not be enough for stable Gunn diode operation. The presence of a micro-cooler only few micron away from the active channel would improve the heat removal and as a result planar Gunn diodes would be operating in a thermally stable environment. Recently similar approach has been implemented is some of the compound semiconductor devices [4]. However, there is no previous report on integrated planar Gunn diodes with a micro-cooler. Hence this work would be a significant step to address the stable operation for short L_{ac} Gunn devices.

We are presenting for the first time an integrated thermionic micro-cooler integrated with a planar Gunn diode. We will describe the layer structure of the planar Gunn diode with integrated thermionic micro cooler followed by the device fabrication and finally first experimental measurement of the micro cooler.

II. EXPERIMENTAL

A. Planar Gunn Diode and MicroCooler Design

In conventional vertical Gunn diode the cathode contact is at the bottom and also acts as the heat-sink. The substrate is removed in that case and device placed in a metal cavity. However, planar Gunn devices are designed to be integrated with on chip electronic components on a substrate. In this case, placement of heat sinking will always be a long distance away from the active channel of the devices. An integrated micro-cooler is one possible solution to improve the heat removal in a planar structure. Figure 1 shows schematically the integration of a micro cooler for planar Gunn diode on a semi-insulating substrate. The planar Gunn diode and micro cooler are electrically isolated from each other by using a 5 μm thick un-doped GaAs separation layer. Monte Carlo simulations were carried out to estimate the smallest possible separation layer to achieve electrical isolation between two devices.

![Figure 1. A schematic layout of integrated planar Gunn diode and micro cooler on GaAs substrate.](image)

B. Device Layer Structure & Fabrication

Molecular beam epitaxy was used to grow layers on a 620 μm thick semi-insulating GaAs substrate. A 0.5 μm GaAs...
buffer layer was grown first on the substrate followed by a 300 nm n-GaAs lower contact layer doped at 4 × 10^{18} cm^{-3}, 50 nm graded aluminium gallium arsenide (Al_{0.16}Ga_{0.84}As), 100 periods of a Al_{0.16}Ga_{0.84}As-Al_{0.3}Ga_{0.7}As super-lattice (totaling 2 μm and maintain doping in supper-lattice and graded layer at 2 × 10^{19} cm^{-3}), 50 nm graded (Al_{0.16}Ga_{0.84}As), and 300 nm n-GaAs top contact layer. The super-lattice reduces phonon transport, providing a thermal barrier between the hot bottom contact layer and the cold top contact layer. A further 5 μm un-doped GaAs separation layer was grown on the top contact layer of micro-cooler layers. It is followed by the active part of the Gunn device consisted of the channel made of 50 nm un-doped GaAs t sandwiched by a 20 nm double δ-doped Al_{0.23}Ga_{0.77}As layers. 15 nm of highly doped GaAs was grown on top of the Al_{0.23}Ga_{0.77}As barrier layer to avoid oxidation. Finally, a 100 nm GaAs cap layer doped at 4 × 10^{18} cm^{-3} was grown for Gunn diode contacts. Figure 2 shows the epitaxial layer structure of the integrated Gunn and micro-cooler. The fabrication of the integrated devices starts with the planar Gunn device and the fabrication process is already described elsewhere [1]. The micro-cooler structure is defined by mesa etching, which enables a large number of different cooler geometries to be fabricated, as well as TLM test cells for measuring the contact specific resistance. The measured specific resistance of the ohmic contacts was 5 × 10^{4} Ωcm². The measured total resistance of a cooler, with an area of 20,000 μm², was approximately 1Ω.

References

