
 

 
 
 
 
 
 
Freuling, C., Hampson, K., Selhorst, T., Schroder, R, Meslin, F.X., 
Mettenleiter, T.C., and Muller, T. (2013) The elimination of fox rabies from 
Europe: determinants of success and lessons for the future. Philosophical 
Transactions of the Royal Society of London Series B: Biological Sciences, 
368 (1623). ISSN 0962-8436 
 
 
Copyright © 2013 The Authors 
 
 
 
http://eprints.gla.ac.uk/83569 
 
 
 
 
Deposited on: 25 Ju1y 2013 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://eprints.gla.ac.uk/83569
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


rstb.royalsocietypublishing.org
Research
Cite this article: Freuling CM, Hampson K,
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Despite perceived challenges to controlling an infectious disease in wildlife,

oral rabies vaccination (ORV) of foxes has proved a remarkably successful

tool and a prime example of a sophisticated strategy to eliminate disease

from wildlife reservoirs. During the past three decades, the implementa-

tion of ORV programmes in 24 countries has led to the elimination of

fox-mediated rabies from vast areas of Western and Central Europe. In

this study, we evaluated the efficiency of 22 European ORV programmes

between 1978 and 2010. During this period an area of almost 1.9 million km2

was targeted at least once with vaccine baits, with control taking between 5

and 26 years depending upon the country. We examined factors influencing

effort required both to control and eliminate fox rabies as well as cost-related

issues of these programmes. The proportion of land area ever affected by

rabies and an index capturing the size and overlap of successive ORV cam-

paigns were identified as factors having statistically significant effects on the

number of campaigns required to both control and eliminate rabies. Repeat

comprehensive campaigns that are wholly overlapping much more rapidly

eliminate infection and are less costly in the long term. Disproportionally

greater effort is required in the final phase of an ORV programme, with a

median of 11 additional campaigns required to eliminate disease once inci-

dence has been reduced by 90 per cent. If successive ORV campaigns span

the entire affected area, rabies will be eliminated more rapidly than if cam-

paigns are implemented in a less comprehensive manner, therefore reducing

ORV expenditure in the longer term. These findings should help improve the

planning and implementation of ORV programmes, and facilitate future

decision-making by veterinary authorities and policy-makers.
1. Introduction
Vaccination programmes are one of the most effective means of controlling

infectious diseases [1]. Smallpox and rinderpest have been eradicated through

vaccination programmes in people and cattle, respectively [2,3], and other dis-

eases have been eliminated from large parts of the globe as a result of concerted

vaccination efforts. Yet, wildlife diseases that pose a threat to public health, live-

stock production or conservation are less likely to be considered as candidates

for vaccination programmes owing to the difficulty and expense in the mass

delivery of vaccines to wild animal populations. Indeed, the lack of a wildlife
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reservoir is considered a prerequisite for a disease to be con-

sidered eradicable [4]. However, with the development of

oral vaccines and bait delivery systems, the elimination of dis-

eases circulating in wildlife populations has become a

tantalizing possibility. The pre-eminent example of vaccination

of wildlife populations is the large-scale oral vaccination pro-

grammes that have eliminated fox rabies from Western

Europe and greatly reduced incidence in Central Europe [5].

Here, we focus on the effectiveness of these programmes,

and the factors underlying the critical transition from disease

control to the ultimate goal of disease elimination.

Rabies is one of the oldest recognized zoonoses, and

is, with the exception of the Antarctic, present worldwide.

The causative agents are negative-strand RNA virus species

(previously genotypes) of the Lyssavirus genus, family

Rhabdoviridae of the Mononegavirales order [6]. Of all Lyssa-
virus species known to date, the prototypic rabies virus

(RABV) is the most important being maintained by a diversity

of abundant canid and viverrid hosts across the world, and

Chiroptera in the Americas [7]. This invariably fatal disease

is a major public health threat [8]. Although human cases are

preventable by prompt administration of post-exposure pro-

phylaxes, control and elimination is only feasible in reservoir

populations, e.g. domestic dogs and foxes, amongst others [9].

Dogs were recognized as a source of rabies infection in

Europe several centuries ago. Over the first half of the twen-

tieth century, measures such as dog movement restriction

and muzzling drastically reduced incidence and led to free-

dom from dog-mediated rabies in some parts of Europe

[10]. With the development and application of mass parent-

eral vaccination, canine rabies was eliminated from the

continent, persisting only in the European part of Turkey

[11]. However, parallel to this success, rabies virus emerged

in red foxes (Vulpes vulpes) south of the Kaliningrad region

following a presumed spillover from domestic dogs. Within

a few decades, the virus was circulating among foxes across

much of Central and Western Europe [12].

Early counteractive control measures aimed exclusively at

reducing fox numbers. These met with only limited success,

and eventually were regarded as counterproductive as they

disrupted the social system of foxes, thereby increasing contact

rates and disease incidence [13]. Mass parenteral vaccination

was not considered to be a viable alternative [12,13]. However,

experiments in the 1970s showed that red foxes could be immu-

nized against rabies by the oral route leading to the concept of

oral rabies vaccination (ORV) [14]. In 1978, the first ORV field

trial was conducted in Switzerland [15] and was followed by

efforts in other European countries, e.g. Germany, France

and Belgium [16]. Thanks to pioneering attempts in a few

countries in Western Europe and financial support from the

European Union (EU) [10], it soon became evident that ORV

was a breakthrough for fox rabies control. National elimina-

tion programmes using ORV were successfully implemented,

and for approved programmes, 50 per cent (since 2010, 75%)

of the costs for vaccine baits and bait distribution were

reimbursed by the EU [10,17]. The EU also promoted the

implementation of ORV programmes in neighbouring non-

EU countries by co-financing a 100 km deep vaccination belt

along common borders. Currently, the EU supports ORV in

the Russian region of Kaliningrad, the Western Balkans and

in northeastern neighbouring countries [18].

ORV programmes have been evaluated for several

countries in Europe, including Belgium [19], Switzerland
[20], France [21], the Czech Republic [22], Estonia [23,24],

Germany [25,26] and Italy [27,28]. Prior to the successful

elimination of rabies from countries in Western Europe,

Stöhr & Meslin [29] compared the progress and setbacks of

ORV. However, a comparative epidemiological analysis of

ORV across Europe and its success in eliminating rabies has

not been conducted. We, therefore, evaluate the efficiency

of European ORV programmes in terms of controlling and

eliminating fox rabies and we examine cost-related issues of

these programmes. Our findings provide valuable insights

into the effort and tactics required for rabies elimination,

and guidance for decision making in future wildlife vaccina-

tion programmes by veterinary authorities, natural resource

managers and policy-makers.
2. Material and methods
(a) Study regions and oral rabies vaccination approach
The study regions encompassed countries from Western, Central

and Eastern Europe that implemented ORV programmes

between 1978 and 2010. Only countries in which more than

four ORV campaigns were conducted during this period were

considered for analysis (detailed in table 1). A standard ORV

approach was applied that typically involved (i) implementation

of ORV campaigns twice a year (spring and autumn), (ii) an aver-

age bait density of 20–25 baits km22, (iii) aerial and manual

distribution of vaccine baits, and (iv) a flight line distance of

500–2000 m in the case of aerial distribution. Occasionally, ORV

campaigns slightly diverged from this protocol. In a few cases,

ORV campaigns were only conducted once a year because of the

specific epidemiological situation (Italy, 1984) or additional cam-

paigns were conducted either in summer or in winter (France,

Germany 2005, Italy 2009) or at short intervals (Germany, 2005;

table 1). During the observation period a total of seven different

SAD (Street Alabama Dufferin) derived oral rabies virus vaccines

were used, including SAD Berne [15,23], SAD B19 [26,28,30], SAG2

[23,31,32], SAD P5/88, SAG1, SAD VA1 [26], Vnukovo32, and

one recombinant vaccine, i.e. V-RG [33,34]. It is assumed that the

efficacy of the vaccines used is comparable as requirements of

the European Pharmacopoeia had to be met for these vaccines to

be licensed.

(b) Data collection
As part of the terms of reference as a WHO Collaborating Centre

for Rabies Surveillance and Research, national rabies surveillance

data were collected and evaluated. Rabies cases presented here

were laboratory confirmed using standard diagnostic techniques

[35]. Records originated from regular official submissions from

veterinary authorities of European countries to the WHO

Rabies Bulletin Europe database established at the Friedrich–

Loeffler-Institut (FLI), where rabies cases in different species

are summarized for regions on a quarterly basis [36]. Surveil-

lance was generally passive, based on submission of specimens

by veterinarians, hunters, wildlife managers and the general

public. International recommendations for rabies surveillance

vary but suggest that either at least four or eight foxes per 100

km2 be tested annually [8,37,38]. Additionally, specimens

obtained for monitoring of ORV campaigns were also examined.

However, this surveillance, consisting of random sampling of

foxes from the regular hunting bag (not suspect for rabies),

revealed only a very small number of additional cases to those

obtained through passive means.

For each country, annual animal rabies cases (not including bat

rabies) from the year of the first implementation of ORV cam-

paigns until the year of the last wildlife-mediated rabies case
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(rabies-free countries) or the year 2010 (rabies-endemic countries)

were used for analysis. Additionally, for each country, data related

to the ORV programmes were requested, including the size of indi-

vidual vaccination areas, the timing of vaccination campaigns, bait

density, mode of bait distribution and oral rabies virus vaccine

strains used. For each vaccination campaign, e.g. in spring, in

summer, in autumn or in winter, the size and location of vacci-

nation areas was either requested as shape files or, if not

available, as scanned maps. In the latter case, vaccination areas

were digitized and converted into a GIS database (ArcGIS, Esri

Inc., Redlands, CA, USA), as previously described [39].

(c) Data analysis
We used a Cox-proportional hazard model [40] to investigate fac-

tors influencing the effort (number of campaigns) required to

control and ultimately eliminate fox rabies through ORV. We

used the number of ORV campaigns required for control, perma-

nent control and elimination as the baseline hazard function,

which was right censored for ORV programmes that had not

achieved these endpoints by 2010. In this study, elimination

was defined as a reduction of cases to zero. The fact that this situ-

ation has to be maintained for a minimum of 2 years after the last

detected rabies case for a country to be officially recognized as

rabies-free was not considered here. We defined control as a rela-

tive reduction in annual rabies cases by more than 90 per cent

compared with initial endemic levels prior to implementation

of ORV. We differentiated between control, when incidence is

reduced by at least 90 per cent, but may subsequently increase,

and permanent control, whereupon the 90 per cent reduction

in rabies cases is maintained.

We considered the following variables as potential factors

influencing the baseline hazard of effort required to control

and eliminate fox rabies from a country: the size of the country

(in km2); the area and proportion of the territory that was

ever vaccinated (area given in km2); the length of borders to neigh-

bouring rabies-infected (endemic) areas (in km); initial rabies

incidence in the year prior to the implementation of ORV,

expressed both as the number of detected cases and the number

of detected cases per square kilometre; years of ORV experience

prior to each country starting an ORV programme; and an index

that captures the contiguity and overlap of consecutive ORV cam-

paigns carried out in a country ([41]; table 2). Areas were log

transformed, and proportions logit transformed, prior to statistical

analysis. The best fitting model was selected using a stepwise

algorithm that minimizes the Akaike information criterion.

For any fox rabies endemic area covered at least once with vac-

cine baits during the course of an ORV programme, we assumed

that the rabies-affected area corresponded to the maximum area

ever vaccinated in that country (Vmax in km2). Vaccination areas

were mostly bounded by administrative borderlines or natural bar-

riers. The mean area index, I, is a metric designed to capture the

comprehensiveness of ORV programmes in terms of the extent of

spatial overlap of consecutive ORV campaigns (d) and the pro-

portion of the endemic area covered, for the duration of the

programme. The index is calculated from the area and overlap of

consecutive campaigns t (t . 1) according to the following

equations:

I ¼ 1

T

XT

t¼2

It ð2:1Þ

It ¼
dt

Vt�1

Vt

Vmax
ð2:2Þ

with Vt, the size of the vaccinated area at campaign t, and dt is the

intersection of successive campaigns Vt and Vt21. The index varies

from zero to one, from campaigns that are entirely non-overlapping

to those that entirely overlap and are equal in size to the maximum

area ever vaccinated [41]. If ORV campaigns were interrupted for



Table 2. Variables in the statistical analysis of factors affecting the control and elimination of fox rabies using ORV.

variable definition

initial cases, N, and initial cases per

square km, Nkm2

the annual number of cases detected in the year when ORV began in a country, also expressed in terms of

the number of cases detected per square kilometre (N/vAmax)

vaccinated area, Vmax the maximum area (km2) where vaccine baits were distributed, corresponding to the rabies endemic area

area of the territory, A the total area (km2) of the country under consideration

proportion of the territory ever

affected, P

the maximum proportion of the territory ever vaccinated (P ¼ V/A)

border length, B the length of the common boundary (km) between the area vaccinated in the focal country and the area

vaccinated in neighbouring countries

area index, I (IC100, IC90 and IC90p) an index capturing the mean spatial overlap and completeness of consecutive ORV campaigns in a country.

The mean index was calculated from the start of ORV until the last detected case, IC100; until initial

numbers of cases had been reduced by 90%, IC90 (but may have subsequently increased); and until this

reduction was maintained permanently, IC90p; see equation (2.1) and text

years of ORV experience, Y number of years since ORV first began in Europe
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more than one year, subsequent ORV campaigns were considered

new ORV programmes and the area index was re-calculated (table

1).

Three models were setup with the number of campaigns

required for control and elimination as dependent variables.

Mean area indices were calculated for the corresponding duration

of ORV programmes until control, permanent control, and elimin-

ation were achieved (IC90, IC90p and IC100). Correlations between

possible explanatory variables were examined using the Spearman

rank correlation coefficient [42] and only uncorrelated variables

were included in the analysis. The proportional hazards assump-

tion for a Cox regression model fit was tested as described

elsewhere [43,44].

Additional strategic variables relating to the design and

implementation of ORV, e.g. number of vaccine baits, bait den-

sity or the modes of bait distribution (hand/aerial) were not

considered in this analysis, because this information was not

available for all countries or changed over time.

For the majority of European countries included in this study,

direct and/or indirect expenditure on ORV programmes was not

available. However, cumulative vaccination area over time can be

used as a surrogate for financial expenditure on ORV following

methods previously described by Selhorst & Schlüter [45]. In

their analysis, it was shown that total expenditure on ORV is pri-

marily owing to purchase of vaccine baits (market-based price)

followed by costs of bait distribution [26,45]. Both costs are deter-

mined largely by the area vaccinated during each campaign,

therefore the cumulative area vaccinated was considered a reason-

able approximation of ORV programme expenditure. Total direct

ORV programme costs (c, in euros) were approximated using the

number of baits distributed per square kilometre (b) and the cumu-

lative area vaccinated (a, in km2), as follows: c ¼ a(0.82 b þ 2.01)

[30]. We assume 20 baits km22 (b ¼ 20), which is the standard

bait density for oral vaccination of foxes in Europe, corresponding

to 18.41 euros per square kilometre vaccinated.

We used a linear mixed effects model to determine the

relationship between annual incidence in each county (Nt) and

approximate cumulative expenditure starting from the year of

ORV implementation until the year the last rabies case was

detected. Therefore the analysis was limited to countries that

eliminated rabies. The model was fitted using restricted maxi-

mum likelihood, with country as a random effect (see the

electronic supplementary material, figure S2) and the coefficient

l estimated as a fixed effect. The exponential decline in rabies

incidence with cumulative vaccination effort was modelled
since annual rabies incidence was loge transformed. Using this

relationship (equation (2.3)) we estimated the approximate finan-

cial expenditure c1/x required to reduce initial rabies incidence at

the start of ORV to N0/x.

Yðc1=xÞ ¼ Y0

x
¼ Y0 expð�lc1=xÞ

1

x
¼ expð�lc1=xÞ

ln
1

x

� �
¼ �lc1=x

c1

x
¼ lnðxÞ=l ð2:3Þ

All analyses were performed using the ‘R’ programming

language [46].
3. Results
During the past three decades, 24 European countries

implemented ORV programmes on their territories. Since

1978 the overall size of the area under vaccination in

Europe steadily increased to 614 773 km2 in 1996 as countries

in Western and Central Europe began to implement ORV pro-

grammes. From 1997 until 2006, the area under vaccination

remained relatively constant. Since 2000 ORV programmes

in several countries have been discontinued following suc-

cessful rabies elimination, while programmes have been

initiated in countries in Eastern Europe (table 1). The total

area under concurrent vaccination eventually peaked in

2007 at 1 077 370 km2 (figure 1). The total area ever covered

at least once with vaccine baits between 1978 and 2010

encompassed 1.92 million km2. The spatial extent and fre-

quency of ORV campaigns varied considerably, both within

countries and at a regional level, with the total number of

campaigns each country conducted between 1978 and 2010

ranging from one to 50 (figure 2a). In 12 countries ORV did

not encompass the entire territory (figure 2a).

As a result of the ongoing implementation of ORV, the

number of rabies cases reported annually in Europe steadily

declined from 17 202 in 1978 to 7581 in 2010 with intermediate

peaks in 1984 and 1989 (figure 1; electronic supplementary

material, figure S1). During this period nine countries
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successfully eliminated fox rabies from their territory

(figure 2b,c and table 1; electronic supplementary material,

figure S1). The World Organization for Animal Health (OIE)

requires that no case be detected for a two-year period before

countries can be officially declared free from rabies [47]. Fin-

land and the Netherlands achieved rabies-free status in 1991

[48], Switzerland in 1998 [20], Belgium and Luxembourg in

2001 [48], the Czech Republic in 2004 [22] and Germany and

Austria in 2008 [26,49]. An imported dog rabies case with lim-

ited secondary transmission caused France to lose its rabies-free

status in 2008 which it had achieved in 2000, but rabies freedom

was regained in 2010 [10]. Italy became rabies-free in 1997,

although fox rabies re-emerged on two subsequent occasions,

most recently in 2008 (table 1). Additionally, Slovakia reported

its last case in 2006 and could be regarded as rabies-free,

although it has not been officially declared rabies-free according

to OIE standards. Other countries now close to eliminating

rabies include Hungary where the last reported case was in

2010 and Lithuania, Estonia and Italy where only single cases

were reported in 2011 (www.who-rabies-bulletin.org).

The situation was very different amongst countries prior to

the implementation of their ORV programmes. For instance,

initial incidence ranged from 10 484 detected cases in Germany

to just 26 in Kaliningrad Oblast, Russia (table 1). Much of this

variation was attributable to the land area of countries with

endemic rabies, as evident in the significant positive correlation

between cases detected and territory size (Spearman’s rank cor-

relation, 0.43). However, there was still a large range in the

number of cases detected per square kilometre, varying from

0.05 cases km22 (Luxembourg) to less than 0.001 cases km22

(Bulgaria). Several significant correlations were detected

between other potential explanatory variables (see the elec-

tronic supplementary material, table S1). Correlated variables

were therefore excluded from further analysis, leaving the

area index, the proportion of the territory ever affected (P),
the maximum area vaccinated (Vmax), and relative rabies inci-

dence (number of cases detected per square kilometre, Nkm2 )

as possible explanatory variables for the analysis of effort

required to control and eliminate rabies.

Control of rabies to less than 10 per cent of initial endemic

levels took a median number of 17 successive ORV cam-

paigns, but ranged from three to 62 depending on the

country. An additional four campaigns were required to

achieve permanent control, and an additional 11 campaigns

were required to eliminate rabies (median of 28 campaigns

to achieve elimination versus 21 for permanent control and

17 for control). Following stepwise model selection, the area

index and the proportion of a territory affected were found

to have significant effects upon the number of campaigns

required for control, permanent control and elimination

(table 3 and figure 3). For countries that implemented consist-

ently overlapping campaigns covering most of the affected

area and therefore with a mean area index close to one,

fewer campaigns were required in comparison with countries

that implemented relatively incomplete and non-overlapping

campaigns (for elimination: with P ¼ 0.95 and IC100 ¼ 1, a

median of 25 campaigns were required, versus 62 with

IC100 ¼ 0.2, figure 3a; for control: with IC90 equal to 1.0 and

0.2, 13 and 24 campaigns were required, respectively,

figure 3c). In contrast, the greater proportion of the territory

ever affected, the more ORV campaigns were necessary (for

elimination: 42 versus six campaigns for P ¼ 1.0 versus

0.02, with IC100 set to 0.65, figure 3b; for control: 23 versus six

campaigns, figure 3d). These results suggest that an increase

of one in the log-odds (logit) of the proportion of the territory

affected decreased the hazard of elimination by 55 per cent and

an increase of one in the log-odds of the area index more than

doubled the hazard of elimination (217%), whereas the impacts

on the hazard of control and permanent control were similar

but slightly smaller. As initial numbers of cases detected per

http://www.who-rabies-bulletin.org


20101983

(a)

1

50

(c)(b)

Figure 2. ORV effort and rabies cases. (a) Spatial extent of ORV area and the total number of ORV campaigns conducted in each country between 1978 and 2010.
Reported rabies cases in (b) 1983 and (c ) 2010.
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square kilometre increased, the number of campaigns requi-

red for permanent control also increased (table 3). For all

the models, the Cox-Snell Pseudo R2 values were relati-

vely low (R2¼ 0.28 for control, R2¼ 0.37 for permanent

control, R2¼ 0.48 for elimination, table 3).

The cumulative area vaccinated and therefore the

approximate expenditure by different countries to eliminate

rabies varied considerably. Poland and Germany were

amongst those that spent most on ORV, whereas rabies elim-

ination in Switzerland was relatively inexpensive (table 1).

For countries that eliminated rabies, a significant linear

relationship was found between cumulative area vaccinated

and loge rabies incidence (figure 4). Although the exponential

decline in incidence with increasing expenditure was evident

for all these countries, considerable variation was evident

from the random effects coefficients (see the electronic sup-

plementary material, figure S2). This pattern indicated that

increasing cumulative expenditure resulted in progressively

smaller reductions in rabies incidence until elimination

was achieved, albeit with high variation between countries

(see the electronic supplementary material, figure S2). Cumu-

lative effort to reduce initial incidence by 50 per cent followed

an almost linear increase, whereas disproportionally greater

effort was required in the final phase of elimination (figure 4).

The approximate expenditure required to reduce initial
incidence (N0) to N0/x was estimated as: c1/x¼ loge(x)/

20.9257 (see equation (2.3), figure 4).
4. Discussion
The elimination of fox rabies from Europe represents possibly

the most extensive and successful example of a vaccination

programme targeting wildlife to date. In recent decades sub-

stantial progress in rabies control has been made in many

parts of the world. Mass dog vaccination eliminated canine

rabies from Europe and much of the Americas [10,50],

almost exclusively relying upon parenteral delivery. The

development of ORV has made the elimination of disease

from wildlife reservoirs a reality. Over a period of three dec-

ades, vaccine baits have been distributed across nearly

1.9 million km2 of Europe, with nine previously endemic

countries now being rabies-free (figures 1, 2 and table 1;

electronic supplementary material, figure S1,). Previous evalu-

ations of ORV in Europe have focused on individual countries

[19,20,23,26–28], with only one descriptive study assessing ter-

ritorial differences and factors contributing to ORV success,

including vaccine strains, and bait density. The latter covered

the period from 1978 until 1994 when ORV was considered a

work in progress as no countries had yet achieved rabies
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freedom [29]. Here, we provide the first comparative analysis of

the efficiency of ORV in Europe and factors influencing the

effort required to control and ultimately eliminate rabies, focus-

ing on initial epidemiological conditions (table 1), geography

and vaccination strategy.

Of the 24 European countries that have implemented ORV

programmes, Finland and Turkey were excluded from our

analysis. Finland was rabies-free until 1988 when fox rabies

was introduced to the southeast of the country, most likely

by rabid wolves. The resulting outbreak, which predominately

affected raccoon dogs, was contained within a restricted area

and eliminated after three ORV campaigns [51]. Turkey is the

only country in Europe where dog-mediated rabies remains a

problem. Sustained rabies transmission in foxes occurred in

the Aegean region of Turkey following a spillover from dogs.

Three ORV campaigns were undertaken during the winter

months between 2008 and 2010. Although these demonstrated

the feasibility of wildlife rabies control by ORV in Turkey [52],

the impacts are difficult to assess for the entire country because

of persisting dog-mediated rabies [10].

Successive ORV campaigns led to relatively rapid reduc-

tions in rabies incidence (table 1 and figure 4), typically

bringing disease under control (more than 90% reduction in

detected cases) within 10 years, and in many cases less than

five years. However, the final stages of elimination typically

required an additional 10 or more campaigns before the last

case was detected, with ORV needing to be maintained for

a further 2 years without any detected cases for certification.

Previous research suggested that rabies could be eliminated

from a region within 10–12 campaigns, i.e. 5–6 years [41,53].

But countries that successfully eliminated rabies in Europe

required substantially longer (figure 3), with a median of 28

campaigns (14 years, range: 5–26) to achieve elimination,

and 17 for control. Favourable topographical features may

have contributed to the swift elimination of rabies from some

European regions after only a few ORV campaigns, such as

mountain ranges in Switzerland [31], while a number of

other factors may have prolonged progress to elimination.

The proportion of a territory ever affected by rabies and

the area index both had a decisive influence on ORV success

(see the electronic supplementary material, tables S1 and S3;

figure 3). The area index captures the comprehensiveness of

ORV in terms of the extent and spatial overlap of consecutive

ORV campaigns [41]. Among the 22 countries area indices

varied considerably from 0.006 to 1 (table 1). The closer

the mean area index was to one, the fewer campaigns

were needed to both control and eliminate rabies (figure 3).

A high mean area index reflects sufficiently sustained vacci-

nation coverage in the fox population to maintain herd

immunity and thereby interrupt rabies transmission, despite

high population turnover [13,41]. The finding that the pro-

portion of the territory affected correlates with campaigns

required to control and eliminate rabies may reflect more iso-

lated areas more quickly becoming free from disease, with

elimination more likely in smaller regions simply by chance

[41]. Otherwise, modelling suggests that time to control or

elimination should be independent of the size of the affected

area, assuming the same ORV strategy was applied [53].

Speculation that countries with high incidence, e.g. Swit-

zerland, Austria, Germany and Hungary (table 1) require

greater effort to eliminate disease [29] was not corroborated,

though countries with higher incidence per square kilometre

required more ORV effort to achieve maintained reductions
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in rabies incidence. This may be indicative of a more enduring

effect, as improvements in surveillance may have reduced the

power of our analyses of control, because we used initial
endemic levels as a baseline. Surveillance considerably

improved in some countries across the continent over the last

few decades, even as the disease was progressively eliminated
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(figure 2b,c). International recommendations have suggested

sample sizes for wildlife rabies surveillance [8,37,38]. While

useful for monitoring bait uptake, this approach is arbitrary

and inappropriate for case detection, because only suspect ani-

mals should be examined [54]. Our analyses instead suggest

that it is more important to ensure that the extent of surveil-

lance is sufficiently widespread for case detection across the

endemic area, to effectively define the area for ORV.

ORV campaigns are undoubtedly easier to organize and

manage across smaller spatial scales. In large countries ORV

is often hampered by management and structural deficiencies.

For instance, federal structures in Germany and Poland likely

caused difficulties in individual regions [25,26,55] prolonging

elimination at a national level (table 1). Although ORV pro-

grammes should ideally cover the entire affected area [41],

larger countries often started ORV in restricted areas owing

to logistical challenges and resource availability [26,32,48].

This is illustrated by the example of Romania, where despite

approval for reimbursement of ORV costs by the EU, no

budget was allocated for some years delaying implementation

(P. Demetriou 2012, personal communication). The Baltic

countries did not vaccinate the entire affected area from the

beginning [23], and initial ORV attempts in Latvia and Lithua-

nia failed to efficiently control rabies and were interrupted

owing to budget constraints (table 1). Hence, subsequent ORV

did not benefit from previous efforts and resources were wasted.

The type of vaccine used has been reported to be key to ORV

success [23,48], however regional assessments have failed to

reveal any association [29]. We, therefore, assume negligible

differences between vaccines used in this study since all met

the international regulations for quality control. Unfortunately,

strategic factors other than the area index, e.g. optimal timing of
campaigns, proportion of aerial versus hand distribution, exact

bait density and variation in flight line distances, could not be

analysed because of incomplete data [56–58].

We did not find any effect of shared borders between

countries on the number of campaigns required for control or

elimination. Yet, numerous examples of incursions (France–

Switzerland (1990), France–Belgium–Germany (1993), Italy–

Slovenia–Austria (1993), Germany–Poland–Czech Republic

(1995) and Italy–Slovenia (2008) [26,28,29,59]) demonstrate

the risk posed from neighbouring endemic areas and the need

for coordinated cross-border activities [21,23,26]. In 2012, fox-

mediated rabies spread from the Former Yugoslavian Republic

of Macedonia (FYROM) into Greece, a country which was

previously rabies-free (www.who-rabies-bulletin.org), whereas

insufficient cross-border cooperation between federal states

was the main obstacle to elimination in Germany [26]. Our

analysis only crudely captures shared border length for the

entire observation period while the risk varies over time

depending on the rabies situation in adjacent areas. A more

comprehensive approach that accounts for the inherent spatio-

temporal transmission dynamics at border regions is therefore

merited in future.

Costs of ORV vary greatly across North America and

Europe [23,26,60–62] and detailed cumulative costs (direct

and indirect) can only be calculated on a country basis. Never-

theless, direct ORV costs are largely driven by the area

vaccinated, allowing a rough approximation of investment

required for proportional declines in incidence [45]. Despite

substantial differences between countries, the greater pro-

portion of a territory infected, the higher are the costs of

control (table 1 and figures 3, 4). Besides the proportion of

the territory affected, there are several other reasons why for

http://www.who-rabies-bulletin.org
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example Poland and Germany are amongst those that spent

most on ORV (table 1). In Germany, in the late 1990s, residual

foci of infection persisted in the federal states of North-Rhine

Westphalia, Saxony and Hesse, the latter leading to re-infection

of adjacent areas in Baden-Württemberg and Rhineland-

Palatinate, greatly prolonging rabies elimination [26]. Despite

considerable progress in Poland, legal issues prevent the cessa-

tion of ORV in rabies-free regions, at great expense. An upsurge

of rabies in the Malopolskie region in 2010 in Poland caused a

similar setback to that faced by Germany. While the reasons for

this remain speculative [55] it is likely that this area was some-

what neglected in ORV efforts. Further analyses are needed

to elucidate country-based differences in the cost effectiveness

of ORV.

Our analysis demonstrated a roughly exponential decline

in rabies cases with cumulative ORV expenditure. Therefore

although ORV efforts reduce incidence, more effort is

needed for the same payoff during the endgame (figure 4).

This result is in line with the findings from the Cox-

proportional hazard model that once rabies has been brought

under control, which on average requires 17 ORV campaigns,

an additional 11 ORV campaigns are needed to progress from

a 90 per cent reduction in incidence to elimination. A similar

trend has been observed for other elimination programmes,

e.g. polio and smallpox [63–65]. Modelling results corrobo-

rate this phenomenon of long-lasting low-level persistence

of rabies within vaccinated populations, both in wildlife

and in dogs [53,66]. Despite vaccination suppressing inci-

dence, clusters of infection are able to persist and spread,

even in areas with a high area index; high levels of coverage

are needed for more rapid elimination [53], whereas even

small pockets of low coverage can compromise success and

considerably extend the time to elimination [66]. Rapid

reductions in incidence led to overly optimistic projections

of ORV success by veterinary authorities, and premature

budget cuts and/or declaration of areas as being ‘rabies-

free’, frequently followed by subsequent re-emergence [58].

It is, therefore, of utmost importance to consolidate available

resources to ensure comprehensive coverage eliminates any

residual foci and prevents escalating costs.

Most EU member states and a few countries bordering the

EU have eliminated rabies, or are on target for elimination in

the near future, while countries in Eastern Europe are in the

early stages of control. The establishment of a ‘cordon sani-

taire’ is required to prevent the return of rabies to these

areas, which means that border countries will always

remain in the ‘endgame’ [67]. The EU is promoting the estab-

lishment of a vaccination belt in rabies endemic non-EU

countries by co-financing [18]. Although largely effective,

these immune barriers are not entirely impermeable, as the

2008 incursion into Northern Italy from the Balkan peninsula

beyond the vaccination zone in Slovenia showed [68]. But the

emergence of fox rabies in Greece in 2012 could have been

anticipated, given that no preventive vaccination belt had
been established when cases were detected in neighbouring

border areas in the FYROM. All European countries also

need to maintain a high level of vigilance, as rabies could

be introduced via illegally imported animals [69], and aware-

ness often falls following a prolonged absence of disease and

cessation of ORV will lead to a build up of susceptibles.
5. Conclusions
The sustained effort and enormous geographical extent of

ORV (figures 1 and 2) that has led to the successful control

and elimination of fox rabies from vast areas of Europe is

unprecedented for a wildlife disease [10]. We show that the

extent to which a territory is affected influences the time to

elimination, with ORV campaigns implemented in a compre-

hensive sustained manner (high I ) more rapidly bringing

disease under control. The final phase of elimination is dis-

proportionally the most costly (figure 4), with increasing

ORV effort resulting in diminishing reductions in rabies

cases. Once brought under control, almost as many ORV

campaigns are needed again to eliminate infection and main-

tain vaccination for long enough to certify freedom from

disease. Therefore, a concerted ORV strategy including

common coordination of cross-border activities is essential

to save costs, with enough resources retained for the elimin-

ation stage. Our results indicate that the most efficient ORV

programmes should vaccinate fully across the extent of the

affected area and should secure adequate funding for a suffi-

cient period of time to enable sustained vaccination with a

high area index [28]. Despite the initially high investment

needed for this strategy, fewer campaigns will be required

to eliminate rabies, resulting in cost savings (figure 3). In

any case, funding should include campaigns for two

additional years after the last rabies case [51]. While rapid

early successes in disease control are encouraging, policy

makers must be prepared for continued commitment for

elimination, and not be tempted to prematurely discontinue

elimination programmes, because the final mile requires the

greatest investment.

Elimination of fox rabies in Europe would not have been possible
without the motivation, continuous effort, support and assistance
of the responsible veterinary and public health authorities, hunters
as well as all other involved stakeholders. The submission of rabies
and ORV related data to the WHO Rabies Bulletin Europe by respon-
sible staff of ministries and national reference laboratories for rabies
throughout Europe is gratefully acknowledged. This study was
undertaken in the frame of a lyssavirus research network financially
supported by the German Ministry for Education and Research
(BMBF, grant no. 01KI1016A) and K.H. was supported by the
Wellcome Trust, the Medical Research Council, UK and the Research
and Policy for Infectious Disease Dynamics (RAPIDD) programme
of the Science and Technology Directorate, US Department of
Homeland Security, and the Fogarty International Center, National
Institutes of Health.
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