Disseminated 'jigsaw piece' dolomite in Upper Jurassic shelf sandstones, Central North Sea: an example of cement growth during bioturbation

Hendry, J.P., Wilkinson, M., Fallick, A.E. and Trewins, N.H. (2000) Disseminated 'jigsaw piece' dolomite in Upper Jurassic shelf sandstones, Central North Sea: an example of cement growth during bioturbation. Sedimentology, 47(3), pp. 631-644. (doi: 10.1046/j.1365-3091.2000.00319.x)

Full text not currently available from Enlighten.

Publisher's URL: http://dx.doi.org/10.1046/j.1365-3091.2000.00319.x


Unusual textural and chemical characteristics of disseminated dolomite in Upper Jurassic shelf sediments of the North Sea have provided the basis for a proposed new interpretation of early diagenetic dolomite authigenesis in highly bioturbated marine sandstones. The dolomite is present throughout the Franklin Sandstone Formation of the Franklin and Elgin Fields as discrete, non-ferroan, generally unzoned, subhedral to highly anhedral 'jigsaw piece' crystals. These are of a similar size to the detrital silicate grains and typically account for =5% of the rock volume. The dolomite crystals are never seen to form polycrystalline aggregates or concretions, or ever to envelop the adjacent silicate grains. They are uniformly dispersed throughout the sandstones, irrespective of detrital grain size or clay content. Dolomite authigenesis predated all the other significant diagenetic events visible in thin section. The dolomite is overgrown by late diagenetic ankerite, and bulk samples display stable isotope compositions that lie on a mixing trend between these components. Extrapolation of this trend suggests that the dolomite has near-marine delta18O values and low, positive delta13C values. The unusual textural and chemical characteristics of this dolomite can all be reconciled if it formed in the near-surface zone of active bioturbation. Sea water provided a plentiful reservoir of Mg and a pore fluid of regionally consistent delta18O. Labile bioclastic debris (e.g. aragonite, Mg-calcite) supplied isotopically positive carbon to the pore fluids during shallow-burial dissolution. Such dissolution took place in response to the ambient 'calcite sea' conditions, but may have been catalysed by organic matter oxidation reactions. Bioturbation not only ensured that the dissolving carbonate was dispersed throughout the sandstones, but also prohibited coalescence of the dolomite crystals and consequent cementation of the grain framework. Continued exchange of Mg2+ and Ca2+ with the sea-water reservoir maintained a sufficient Mg/Ca ratio for dolomite (rather than calcite) to form. Irregular crystal shapes resulted from dissolution, of both the dolomite and the enclosed fine calcitic shell debris, before ankerite precipitation during deep-burial diagenesis.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Fallick, Professor Anthony
Authors: Hendry, J.P., Wilkinson, M., Fallick, A.E., and Trewins, N.H.
Subjects:Q Science > QE Geology
College/School:College of Science and Engineering > Scottish Universities Environmental Research Centre
Journal Name:Sedimentology

University Staff: Request a correction | Enlighten Editors: Update this record