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Introduction

The impacts of various stunning methods on the welfare of decapods have recently been
compared by Roth and @ines (2010) using mainly behavioural measures. However, they
did not include any biochemical measures of stress, and they did not evaluate the effect
of stunning using the Crustastun™ device. The present report summarises the results of
a systematic study of the stress imposed by Crustastunning in two commercially
important edible crustaceans, namely the brown crab Cancer pagurus and the European
lobster Homarus gammarus, as indicated by a biochemical measure of stress.

Using the Crustastun on crabs and lobsters

The Crustastun™ is a device designed to administer a lethal electric shock to shellfish such
as crabs and lobsters before cooking, to avoid boiling a live shellfish
(www.crustastun.com). It works by applying a 110 volt, 2-5 amp electrical charge to the
shellfish. These parameters were determined by Robb (1999) and the effectiveness of the
Crustastun in achieving the required stun currents was evaluated by Sparrey (2005).

Measuring stress responses in Crustacea

The most studied stress responses of crustaceans are the alterations in variables related to
fuel metabolism (e.g. hyperglycemia) that occur in order to satisfy the energy demands
imposed by stress (see Neil, 2012a). Such responses are analogous to the secondary stress
responses of fish, although the neuroendocrine mechanisms (primary stress responses) are
completely different and less well understood than for vertebrates. Crustacean
hyperglycemic hormone (CHH) probably represents the most recognized neuroendocrine
mechanism mediating such stress responses in crustaceans (see Chang, 2005, Lorenzon,
2005, Fanjul-Moles, 2006 and Webster et al., 2012 for recent reviews of CHH).

CHH release is modulated by several neuromodulators, including catecholamines (CA).
The role of CA as components of the primary stress response in crustaceans has been
addressed by analogy to the well known involvement of the sympathoadrenal system as a
stress response mediator in vertebrates (Wendelaar-Bonga, 1997), although the specific
pathways and the particular CA involved could be different. However a few studies do
indicate that CA, particularly dopamine (Zou et al., 2003) and noradrenaline (Aparicio-
Simon et al., 2010), may exert control of CHH secretion.

Hormones from the superfamily of hormones to which CHH belongs also control other
physiological processes (Webster et al., 2012). These include ionic and osmotic regulation
(Spanings-Pierrot et al., 2000), water uptake during ecdysis (Chung et al., 1999), gonad
maturation, inhibition of moulting, and secretion of enzymes by the hepatopancreas.
Moreover, the activity and effects of CHH have been reported in a wide variety of
crustaceans subjected to various environmental stresses: hypoxia (Albert and Ellington,
1985), temperature and salinity changes (Keller et al., 1994), capture by trawling (Paterson
and Spanoghe, 1997), emersion (Ridgway et al., 2006), changes in light intensity (Fanjul-
Moles et al., 1998) and exposure to bacterial endotoxins (Lorenzon et al., 1997), parasitism
by dinoflagellates (Stentiford et al., 2001) and heavy metal pollutants (Lorenzon et al.,
2004). Also, exercise seems to be a potent elicitor of CHH release (Morris et al., 2010).
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Crustaceans subject to this range of stressors release CHH, which elevates the
haemolymph glucose concentrations (Webster, 1996; Bergmann et al., 2001; Toullec et al.,
2002). This occurs by mobilisation of intracellular glycogen, brought about because CHH
stimulates the breakdown of glycogen (glycogenolysis) in muscle and in the
hepatopancreas. It does this by inhibiting glycogen synthase and activating glycogen
phosphorylase (Sedlmeier, 1982, 1988; Keller and Orth, 1990). The glucose thus formed
either moves to haemolymph, thus causing hyperglycemia, or is converted intracellularly
to L-lactate via glycolysis, which also then transfers to the haemolymph causing
hyperlactemia (Stentiford et al., 2001; Verri et al., 2001). This is analogous to the
responses of vertebrates.

CHH participates in these adaptive mechanisms to stressful conditions by means of a dual
feedback control system (see Figure 2 in Fanjul-Moles, 2006). Hormone synthesis and
secretion is homeostatically controlled, being under negative feedback control of the
haemolymph glucose (Santos and Keller, 1993a,b; Glowik et al., 1997; Santos et al.,
2001). In a second positive feedback loop, circulating L-lactate in the haemolymph,
resulting from the increasing glycogenolysis in the muscle tissues and hepatopancreas,
stimulates a release of CHH, which in turn stimulates further glycogenolysis (Santos and
Keller, 1993a,b). This leads to parallel changes in haemolymph CHH and L-lactate
occurring under applied stresses, for example high levels of exercise in a crab (see Figure 2
in Morris et al., 2010) and emersion in air in a lobster (see Table 2 in Ridgway et al.,
2006).

Lactate is a good indicator of the stress response in crustaceans simply because it is the
major end product of anaerobic metabolism, with higher concentrations indicating an
attempt by the animal to mitigate the effect of a stressor (Albert and Ellington, 1985).
However, several lines of evidence suggest that L-lactate is not only a metabolic end
product, but may itself perform specific signaling functions related to stress. Thus L-lactate
may act as a metabolic alarm signal, by helping the animal to sense unfavourable
conditions and initiate behavioural and metabolic changes, e.g. behavioural hypothermia as
reported by De Wachter et al. (1997). Catecholamines may also play a role in mediating
such an emergency response, since low but significant positive correlations were found in
that study between levels of L-lactate and levels of adrenaline, octopamine and tryptophan
(a precursor of serotonin).

A further indication of the specific role of L-lactate in stress signaling is provided by the
rapidity of its increase in the haemolymph (hyperlactemia), which often precedes
hyperglycemia. Webster (1996) demonstrated this immediate hyperlactemia preceding
hyperglycemia 30 min post air exposure in C. pagurus. Patterson et al. (2007) showed that
forced de-clawing of a single claw from the edible crab, C. pagurus, caused marked short-
term physiological changes consistent with a stress response in which the lactate response
was particularly rapid, and significant within a few minutes. Similar short-term responses
of L-lactate to a range of other stressors have been reported for other crustaceans. e.g in the
crab Liocarcinus depurator and the squat lobster Munida rugosa immediately after
trawling (Bergmann et al., 2001) and in the lobster, Panulirus cygnus after post-capture
handling (Paterson and Spanoghe, 1997).

For all these reasons, the haemolymph L-lactate concentration provides an appropriate
measure of stress in crustaceans, and is particularly useful since a large number of
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published studies using a wide range of environmental stresses on numerous decapod
crustaceans provide extensive data for comparison. The evaluation of the stresses induced
in crabs and lobsters by the Crustastun machine has therefore been performed using
measures of haemolymph L-lactate.

Materials and Methods

Ethical statement

The number of animals used in these trials was kept to the minimum necessary to obtain
scientific results, considering that the gain in knowledge and long term benefit to the
subject will be significant. All the live animals used were treated with proper care in order
to minimize their discomfort and distress.

Animal supply and holding

Male brown crabs, Cancer pagurus of carapace width 120-140 mm, and male European
lobsters, Homarus gammarus lobsters of carapace length 80-95 mm were used in these
trials. All animals were in the intermoult stage with a hard exoskeleton. They were
captured by commercial fishermen using baited traps (creels) laid offshore from St Abbs
on the east coast of Scotland. After banding the claws of the lobsters, and nicking the
tendons of the crab claws (both standard commercial practices) they were held initially in
seawater tanks at the St Abbs Marine Station, then transferred in chilled containers to the
University of Glasgow. Here they were retained individually in tanks within a closed
seawater circulating system at 10°C for at least two weeks before experimentation.

Experimental design

From the stock of 12 crabs and 12 lobsters, groups of 6 animals of each species, chosen
randomly from the holding tanks, were subjected to one of two treatments: either the
Crustastunning procedure or a sham treatment in which the animals were handled in
exactly the way, but not stunned. This sham treatment was used to provide a control for the
effects of the handling itself which inevitably occur during the Crustastunning procedure.

Specifically, for ‘Crustastunning’ the procedure was applied without prior anaesthesia
using a machine supplied by Studham Technologies Ltd., according to the manufacturer’s
operating instructions. The chamber was filled with a salt solution (~3g L*). Individual
crabs or lobsters were removed from their holding tanks and an initial haemolymph sample
was taken for L-lactate determination (“pre-stun” value). The animal was then placed into
the Crustastun machine, the lid was closed and the animal was stunned by a 110 volt, 2-5
amp electrical charge for 10 s. The animal was then returned to its seawater container
(water temperature 10°C - 12°C). These procedures entailed the animal being emersed into
the air for no more than 2 minutes. A second haemolymph sample (from the contralateral
side) was taken at a time point of 10 minutes after the Crustastunning procedure, for L-
lactate determination (“post-stun” value). No further samples were taken at later time
points as the animals were effectively killed by the Crustastunning procedure, and were
then in a post-mortem state.

For the “Sham” treatment, individual crabs or lobsters were removed from their holding
tanks and an initial haemolymph sample was taken for L-lactate determination (“pre-sham’
value). The animal was then placed into the Crustastun machine and the lid was closed for
10 s, but without activation of the electrical charge. The animal was then returned to its

b
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seawater container (water temperature 10°C - 12°C). Again, for these procedures the
animal was emersed into the air for no more than 2 minutes. A second haemolymph sample
(from the contralateral side) was taken at a time point of 10 minutes after the treatment, for
L-lactate determination (“post-sham” value). Also, in order to gauge recovery, a further
haemolymph sample was taken from animals of the sham-treated group one week later.

Haemolymph sampling and measuring L-lactate

Haemolymph samples were taken from the sinus at the base of a 5th pereiopod of both the
crabs and lobsters using a 25-gauge needle and a disposable syringe. The -lactate
concentration was measured in the haemolymph samples with a portable lactate analyser
(Accutrend ®, Roche Diagnostics, Basel, Switzerland) using freshly extracted samples.
The accuracy of the portable lactate analyser for the determination of L-lactate in decapod
crustacean haemolymph samples had previously been determined by analysing a set of
haemolymph samples from the Norway lobster using an enzymatic method (see Albalat et
al., 2010 for details) and comparing these values with those obtained using the lactate
analyser. It was found that there was a highly significant correlation (r>=0.960) between
the values for haemolymph L-lactate obtained using the two methods.

Statistical analysis

Statistical analyses were carried out for each measure by a General Linear Model (GLM),
treating stunned and sham-treated animals as separate experiments. The response variable was
the haemolymph L-lactate concentration measure and the explanatory variable was the
treatment (as a categorical factor). The residuals were assessed visually for normality.

Data are reported as mean values + standard error of mean (SEM). The differences
between Crustastunned animals and sham-treated animals at the two common sampling
times were analysed by independent samples t-tests, and P-values lower than 0.05 were
considered statistically significant.

Results
The brown crab Cancer pagurus

The results obtained are shown in Figure 1. The haemolmph L-lactate values in the two
groups of 6 rested crabs taken randomly from the holding tanks for either Crustastunning
or the sham treatment had mean values of 0.78 + 0.09 mM L™ (pre-stun) and 1.05 + 0.15
mM L™ (pre-sham) respectively. These values did not differ significantly from each other
(F1’11:2.47, P=0147)

Following Crustastunning the haemolymph L-lactate in the crabs increased to a mean value
of 2.63 + 0.26 mM L™, which was significantly greater than the pre-stun value for this
group (F1,11=45.00, P=0.000).

After the sham treatment the haemolymph L-lactate in the crabs also increased, with a
mean value of 3.80 + 0.42 mM L™ being obtained. This was also significantly greater than
the pre-sham value for this group (F1,11=38.49, P=0.000).

The increases of haemolymph L-lactate following the two treatments were compared by
considering the changes in the values for individual crabs, and it was found that the mean
increase for the Crustastunned crabs (1.85 + 0.30 mM L™ ) was not significantly different
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from the mean increase for the sham-treated crabs (2.75 + 0.36 mM L) (Fy1; = 3.68,
P=0.084).

In terms of their subsequent fates, when returned to their holding tanks the stunned crabs
showed no further visible movements, and never recovered. However the sham-treated
crabs showed normal behaviour when returned to their holding tanks (limb movement,
antennule flicking, a ventilation current and eye retraction reflexes) which continued
thereafter. Samples taken from these sham-treated crabs one week later showed that they
had a mean haemolymph L-lactate concentration of 0.85 + 0.06 mM L™, which was not
significantly different from the pre-sham value of 1.05 + 0.15 mM L™ for this group
(F1,11:1.64, P:0229)

Brown crab Cancer pagurus
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Figure 1. Haemolymph L-lactate concentrations in male brown crabs, Cancer pagurus,
before and after Crustastunning or sham-treatment. Mean values = SEM. N=6 for each
treatment group.

The European lobster Homarus gammarus

The results obtained are shown in Figure 2. The haemolymph L-lactate values in the 2
groups of 6 rested lobsters taken randomly from their holding tanks for either
Crustastunning or the sham treatment had mean values of 0.77 + 0.10 mM L™ (pre-stun)
and 0.72 + 0.06 mM L™ (pre-sham) respectively. These values did not differ significantly
from each other (F;11=0.19, P=0.675).

Following Crustastunning the haemolymph L-lactate in the lobsters increased to a mean
value of 2.28 + 0.19 mM L, which was significantly greater than the pre-stun value for
this group (F111=50.68, P=0.000).

After the sham treatment the haemolymph L-lactate in the lobsters also increased, with a
mean value of 1.85 + 0.23 mM L™ being obtained. This was also significantly greater than
the pre-sham value for this group (F111=22.36, P=0.001).

The increases of haemolymph L-lactate following the two treatments were compared by
considering the changes in the values for individual lobsters, and it was found that the
mean increase for the Crustastunned lobsters (1.52 + 0.18 mM L) was not significantly
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different from the mean increase for the sham treated lobsters (1.13 + 0.19 mM L™) (Fy11 =
2.14, P=0.174).

In terms of their subsequent fates, when returned to their holding tanks the stunned lobsters
showed either no further visible movements, or in a few cases some transient movements
of the mouthpart exopodites and abdominal pleopods, lasting for a few seconds. Thereafter
they became immobile and never recovered. However the sham treated lobsters showed
normal behaviour when returned to their holding tanks (limb movement, antennule
flicking, a ventilation current, pleopod beating and eye retraction reflexes) which
continued thereafter. Samples taken from these sham-treated lobsters one week later
showed that they had a mean haemolymph L-lactate concentration of 0.75 + 0.06 mM L™,
which was not significantly different from the pre-sham value of 0.72 + 0.06 mM L™ for
this group (F111=0.16, P=0.694).

European lobster Homarus gammarus
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Figure 2. Haemolymph L-lactate concentrations in male European lobsters, Homarus gammarus,
before and after Crustastunning or sham-treatment. Mean values £ SEM. N=6 for each treatment
group.

Discussion

The results obtained for the crab Cancer pagurus and for the lobster Homarus gammarus
were generally similar, with only differences of detail. The main findings were that there
was a measurable effect of both Crustastunning and the sham treatment on the
haemolymph L-lactate concentrations of both the crab and lobster, but that there was no
statistically significant difference between the effects of these two treatments in either
species.

Accepting, as outlined in the Introduction, that the haemolymph L-lactate concentration is
an appropriate indicator of both acute and chronic stresses in decapod crustaceans, it can
be concluded that the animals were stressed to a level above the resting value by both of
the imposed treatments. However the fact that the increase in haemolymph L-lactate
concentration was not statistically different after Crustastunning than after the sham
treatment indicates that the stress imposed during the stunning procedure was in fact no
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greater than that induced by the brief emersion (aerial exposure), handling and
haemolymph sampling that were common to both treatments. This implies that there was in
fact no measurable additional stress due to the electrical stunning process itself.

Having established that the stresses measured in C. pagurus and H. gammarus undergoing
the two procedures can be attributed predominantly to the periods of emersion in
combination with handling and blood sampling involved, it becomes relevant to consider
what these levels of acute stress represent in absolute terms. This can be judged by
considering the values of haemolymph L-lactate obtained here in relation to those obtained
in other studies on these and other decapod crustacean species in response to a range of
other stresses. Table 1 summarises the results from a number of such studies.

Table 1. Haemolymph L-lactate concentrations measured in decapod crustaceans
under various applied stresses.

Haemolymph Haemolymph
Species Stress L-lactate initially L-lactate after Reference
(mM L™ stress (mM L™
Cancer pagurus Crustastun 0.8 2.6 Present study
Cancer pagurus Sham 11 3.8 Present study
Cancer pagurus Transport 0.3 10.0 Lorenzon et al. ( 2008)
Cancer pagurus Simulated 3.5 >20.0 Barrento et al. (2011)
transport
Homarus gammarus Crustastun 0.8 2.3 Present study
Homarus gammarus Sham 0.7 1.9 Present study
Homarus gammarus Transport 0.4 12.5 Lorenzon et al. (2007)
Jasus lalandii Emersion 1.0 185 Haupt et al. (2006)
Nephrops norvegicus Emersion 0.6 19.6 Ridgway et al. (2006)
Nephrops norvegicus Trawling - 12.0 Albalat et al. (2010)
Liocarcinus depurator ~ Trawling + - 14.7 Giomi et al. (2008)
emersion
Orconectes limosus Emersion - 19.7 Gade (1984)
Gecarcoidea natalis Exercise 0.46 >20.0 Morris et al. (2010)

It can be seen that in the species studied here, C. pagurus and H. americanus, haemolymph
L-lactate concentrations can reach much higher values when the animals are exposed to
more extreme stresses, such as the emersion and handling associated with transportation,
having been at similar initial resting values. Thus values of 10.0 mM L™ have been
reported for C. pagurus after transportation (Lorenzon et al., 2008), and indeed can reach
more than double that value when combined with emersion at elevated temperatures
(Barrento et al., 2011, but note higher initial value). Similarly, for H. gammarus a mean
value of 12.5 mM L™ was obtained by Lorenzon et al. (2007) following transportation.
From a survey of other stress experiments on a range of decapod crustacean species it can
be seen that values of haemolymph L-lactate well in excess of 10.0 mM L, and often
around 20.0 mM L™, have been recorded (Table 1). These indicate the possible L-lactate
concentrations that can occur in the haemolymph, and so define the range within which the
values obtained in the present study lie.

The relative increases in the measures are also relevant. Thus the increases in haemolymph
L-lactate concentrations from before to after Crustastunning or sham treatment in the
present study represent around a 3.4 fold increase for C. pagurus and around a 2.8 fold
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increase for H. gammarus. These increases are of the order of ten times smaller than those
induced by the most extreme stresses.

The return of haemolymph L-lactate concentrations in sham-treated crabs and lobsters to
pre-treatment resting levels after one week is as expected, and although the detailed time
course of this was not documented, other studies suggest that it would to have taken
several hours to subside following the imposed stress (see for example Albalat et al.,
2010). In contrast, since Crustastunning killed the animals, it was not relevant to continue
measuring haemolymph L-lactate concentrations at later time points. This is because the
animals were then in a post-mortem state, and it is known that during this period there is an
extensive anaerobic fermentation in the tissues, leading to a rapid production of large
amounts of L-lactate (see Figure 3 in Gornik et al., 2008). This highlights the fact that the
interpretation of L-lactate data as an indication of stress has to be made with caution, since
they can reflect in vivo stress or exhaustive exercise, or post-mortem processes, depending
on the situation.

Conclusions

Consideration of both the absolute values of haemolymph L-lactate that can occur, and the
relative increases in them that can be induced by these various stressors, allows the
conclusion to be drawn that the handling stresses imposed in the present study by the sham
treatment are at the mild end of a spectrum of possible intensities. This is not surprising
considering the short duration of the emersion and the careful handling involved, relative
to the more prolonged and severe stresses applied in the other cited studies.

What is more unexpected is the finding that the results obtained provide no evidence that
the Crustastunning process itself induces any additional measurable stress, beyond that
which can be attributed to the emersion and handling involved (as demonstrated by the
sham treatment). The reasons for this can only be speculated, but may relate to the almost
instantaneous cessation of neuronal (and hence presumably also neuroendocrine) activity
in these animals that has been found to occur (see Neil, 2012b), results that are consistent
with previous data from other decapod crustaceans (Neil, 2010).
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