Aaij, R. et al. (2012) First observation of the decay $B_{0s} \to K^*0K^*0$. Physics Letters B, 709 (1-2). pp. 50-58. ISSN 0370-2693

Copyright © 2012 CERN, for the benefit of the LHCb collaboration

http://eprints.gla.ac.uk/80177/

Deposited on: 31 May 2013
First observation of the decay \(B^0_s \rightarrow K^*0\bar{K}^0\star\)

LHCb Collaboration

Abstract

The first observation of the decay \(B^0_s \rightarrow K^*0\bar{K}^0\) is reported using 35 pb\(^{-1}\) of data collected by LHCb in proton–proton collisions at a centre-of-mass energy of 7 TeV. A total of 49.8 \(\pm\) 7.5 \(B^0_s \rightarrow (K^+\pi^-)(K^-\pi^+)\) events are observed within \(\pm 50\) MeV/c\(^2\) of the \(B^0_s\) mass and 746 MeV/c\(^2\) \(\times m_{K^0} < 1046\) MeV/c\(^2\), mostly coming from a resonant \(B^0_s \rightarrow K^0\bar{K}^0\) signal. The branching fraction and the \(C\P-violation\) averaged \(K^0\) longitudinal polarization fraction are measured to be \(B(B^0_s \rightarrow K^0\bar{K}^0) = (2.81 \pm 0.46(stat.) \pm 0.45(syst.) \pm 0.34(f_{L}/f_{T})) \times 10^{-6}\) and \(f_L = 0.31 \pm 0.12(stat.) \pm 0.04(syst.)\).

1. Introduction

The decay \(B^0_s \rightarrow K^*0\bar{K}^0\) is described in the Standard Model by loop (penguin) diagrams that contain a \(b \rightarrow s\) transition. The partial width of the decay arises from three helicity amplitudes that, assuming no additional contributions from physics beyond the Standard Model, are determined by the chiral structure of the quark operators. Predictions obtained within the framework of QCD factorization [1] are \(B(B^0_s \rightarrow K^*0) = (9.1 \pm 1.3) \times 10^{-6}\) for the branching fraction and 0.63 \(\pm\) 0.02 for the \(K^*0\) longitudinal polarization fraction. Predictions improve to \((7.9 \pm 1.1) \times 10^{-6}\) and 0.72 \(\pm 0.16\) \(\pm 0.21\), respectively, when experimental input is used from \(B \rightarrow K^*\phi\) [2,3]. The possibility to use \(B^0_s \rightarrow K^*0\bar{K}^0\) for precision \(CP\)-violation studies to determine the phases \(\beta_s\) and \(\gamma\) of the CKM matrix [4] has been emphasized by several authors [5–8].

The U-spin related channel, \(B^0_s \rightarrow K^*0\bar{K}^0\), a \(b \rightarrow d\) transition, has been observed by BaBar [9], reporting a branching fraction of \((1.28 \pm 0.30 \pm 0.11) \times 10^{-6}\) and \(f_L = 0.80^{+0.10}_{-0.12} \pm 0.06\) with a signal yield of \(33.5^{+8.1}_{-7.8}\) events. An upper limit for the \(B^0_s \rightarrow K^*0\bar{K}^0\) branching fraction of \(1.68 \times 10^{-3}\) with 90\% confidence level was reported by the SLD experiment [10].

We present in this Letter the first observation of the \(B^0_s \rightarrow K^*0\bar{K}^0\) decay using \(pp\) collisions at \(\sqrt{s} = 7\) TeV at the LHC. The data were collected during 2010 and corresponds to 35 pb\(^{-1}\) of integrated luminosity. LHCb has excellent capabilities to trigger and reconstruct beauty and charm hadrons, and covers the pseudorapidity region \(2 < \eta < 5\). The tracking system consists of a 21 station, 1-metre long array of silicon strip detectors placed within 8 mm of the LHC beams. This is followed by a four layer silicon strip detector upstream of a 4 Tm dipole magnet. Downstream of the magnet are three tracking stations, each composed of a four-layer silicon strip detector in the high occupancy region near the beam pipe, and an eight layer straw tube drift chamber composed of 5 mm diameter straws outside this high occupancy region.

The first level of the trigger, implemented in hardware, searches for either a large transverse energy (\(E_T\)) of in–one vertex that is consistent with originating from the interaction point. The second level of the trigger, implemented in software, where the event is searched for 2, 3, or 4-particle requirements. Events are subsequently analyzed by a second software stage, where the event is searched for 2, 3, or 4-particle vertices that are consistent originating from 4-hadron decays. The impact parameter \(\chi^2\) of the selected tracks (\(IP\chi^2\)), defined

\(^{1}\) The impact parameter is the distance of closest approach between a particle's trajectory and its assumed production point.
as the difference between the \(\chi^2 \) of the primary vertex (PV) built with and without the considered track, is required to be greater than 16 with respect to any PV. The tracks are also required to have \(p > 5 \text{ GeV/c} \) and \(p_T > 0.5 \text{ GeV/c} \). The \(B^0 \) decay vertex must have at least one track with \(p_T > 1.5 \text{ GeV/c} \), a scalar \(p_T \) sum of at least 4 GeV/c, and a corrected mass\(^2\) between 4 and 7 GeV/c\(^2\). Additional track and vertex quality cuts are also applied.

Events with large occupancy are slow to reconstruct and were suppressed by applying global event cuts to hadronically triggered candidates, and less than 0 for \(\chi^2 \) with respect to the PV. The difference in the natural logarithm of the likelihoods of the kaon and pion hypotheses must be greater than 2 for \(K^+ \) and \(K^- \) candidates, and less than 0 for \(\pi^+ \) and \(\pi^- \) candidates. In addition, the \(K^+ \pi^- \) combinations\(^2\) must form an acceptable quality common vertex \((\chi^2/\text{ndf} < 9) \), where ndf is the number of degrees of freedom in the vertex fit and must have an invariant mass within \(\pm 150 \) MeV/c\(^2\) of the nominal \(K^0 \) mass (this is around \(\pm 3 \) times its physical width \([4] \)). The \(K^0 \) and \(\bar{K}^0 \) candidates must have \(p_T > 900 \) MeV/c and the distance of closest approach between their trajectories must be less than 0.3 mm. The secondary vertex must be well fitted \((\chi^2/\text{ndf} < 5) \). Finally, the \(B^0 \) candidate momentum is required to point to the PV.

To improve the signal significance, a multivariate analysis is used that takes into account the properties of the \(\Delta \chi^2 \) of the four tracks with respect to all primary vertices in the event. Tracks are required to have \(p_T > 500 \) MeV/c, and a large impact parameter \((p_T \chi^2 > 9) \) with respect to the PV. The difference in the natural logarithm of the likelihoods of the kaon and pion hypotheses must be greater than 2 for \(K^+ \) and \(K^- \) candidates, and less than 0 for \(\pi^+ \) and \(\pi^- \) candidates. In addition, the \(K^+ \pi^- \) combinations\(^3\) must form an acceptable quality common vertex \((\chi^2/\text{ndf} < 9) \), where ndf is the number of degrees of freedom in the vertex fit and must have an invariant mass within \(\pm 150 \) MeV/c\(^2\) of the nominal \(K^0 \) mass (this is around \(\pm 3 \) times its physical width \([4] \)). The \(K^0 \) and \(\bar{K}^0 \) candidates must have \(p_T > 900 \) MeV/c and the distance of closest approach between their trajectories must be less than 0.3 mm. The secondary vertex must be well fitted \((\chi^2/\text{ndf} < 5) \). Finally, the \(B^0 \) candidate momentum is required to point to the PV.

To improve the signal significance, a multivariate analysis is used that takes into account the properties of the \(\Delta \chi^2 \) of the four tracks with respect to all primary vertices in the event. Tracks are required to have \(p_T > 500 \) MeV/c, and a large impact parameter \((p_T \chi^2 > 9) \) with respect to the PV. The difference in the natural logarithm of the likelihoods of the kaon and pion hypotheses must be greater than 2 for \(K^+ \) and \(K^- \) candidates, and less than 0 for \(\pi^+ \) and \(\pi^- \) candidates. In addition, the \(K^+ \pi^- \) combinations\(^3\) must form an acceptable quality common vertex \((\chi^2/\text{ndf} < 9) \), where ndf is the number of degrees of freedom in the vertex fit and must have an invariant mass within \(\pm 150 \) MeV/c\(^2\) of the nominal \(K^0 \) mass (this is around \(\pm 3 \) times its physical width \([4] \)). The \(K^0 \) and \(\bar{K}^0 \) candidates must have \(p_T > 900 \) MeV/c and the distance of closest approach between their trajectories must be less than 0.3 mm. The secondary vertex must be well fitted \((\chi^2/\text{ndf} < 5) \). Finally, the \(B^0 \) candidate momentum is required to point to the PV.

For a given input sample, the above distributions are converted into a set of uncorrelated, Gaussian-distributed variables. Two vectors are defined for each event indicating its distance to the signal \(\{S_i\} \) and to the background \(\{B_j\} \) hypotheses by means of \(\chi^2_S = \sum S_i^2 \) and \(\chi^2_B = \sum B_i^2 \), where the index \(i \) runs over the five discriminating variables indicated above. The quantity \(\Delta \chi^2 = \chi^2_S - \chi^2_B \) is found to be a good discriminant between the two hypotheses and is used to construct the GL function in such a way that it is uniformly distributed in the range \([0, 1]\) for signal events and tends to have low values for the background. The signal input is general-

\[^2\] The corrected mass is related to the invariant mass \(\mathbf{m} \), as \(m_{\text{corr}} = \sqrt{m^2 + p_T^{\text{miss}} \cdot p_T^{\text{miss}}} \), where \(p_T^{\text{miss}} \) is the missing momentum transverse to the \(B^0 \) direction.

\[^3\] This expression refers hereafter to both charge combinations: \(K^+ \pi^- \) and \(K^- \pi^+ \).
the B_s^0 signal, by means of a maximum likelihood fit in the ($m_{K^+\pi^-},m_{K^-\pi^+}$) plane. Three components are included in the fit, namely a double Breit–Wigner distribution describing $B_s^0 \rightarrow K^{*0}R^{*0}$ production, a symmetrized product of a Breit–Wigner and a nonresonant linear model adjusted for phase space in the $K^+\pi^-$ mass, and a double nonresonant component. The fit result, as shown in Fig. 2, gives $(62 \pm 18)\% K^{*0}R^{*0}$ production. The remainder is the symmetrized Breit–Wigner/nonresonant model.

The shape of the background mass distribution was extracted from a fit to the $K^+\pi^-$ mass spectrum observed in two 400 MeV/c2 wide sidebands below and above the B_s^0 mass. The number of background events to be subtracted was determined from the results in Table 1. The sizable K^{*0} contribution present in this background was taken into account.

A model for $B_s^0 \rightarrow K^{*0}R^{*0}(1430)$, representing a broad scalar state interfering with $B_s^0 \rightarrow K^{*0}R^{*0}$ was also studied in the available $K^+\pi^-$ mass range of ± 300 MeV/c2 around the K^{*0} mass. The small number of events made it impossible to measure precisely the size of such a contribution for all values of the interfering phase. However, for values of the phase away from $\pi/2$ and $3\pi/2$ it was determined to be below 12%. Further study of this issue requires a larger data sample.

3. Selection of the control channel

The branching fraction measurement of $B_s^0 \rightarrow K^{*0}R^{*0}$ is based upon the use of a normalization channel with a well measured branching fraction, and knowledge of the selection and trigger efficiencies for both the signal and normalization channels. We chose $B_s^0 \rightarrow J/\psi K^{*0}$, with $J/\psi \rightarrow \mu^+\mu^-$, for this purpose. This decay has a similar topology to the signal, allowing the selection cuts to be harmonized, and it is copiously produced in the LHCb acceptance. The presence of two muons in the final state means that $B_s^0 \rightarrow J/\psi K^{*0}\psi$ tends to be triggered by a muon rather than a hadron, leading to a higher efficiency than for $B_s^0 \rightarrow K^{*0}R^{*0}$. The differences in the trigger can be mitigated by only considering $B_s^0 \rightarrow J/\psi K^{*0}$ candidates where the trigger decision was not allowed to be based on muon triggers that use tracks from the decay itself.

The offline selection criteria for $B_s^0 \rightarrow J/\psi K^{*0}$ were designed to mimic those of $B_s^0 \rightarrow K^{*0}R^{*0}$. In particular, all cuts related to the B_s^0 vertex definition were kept the same. We also used the same GL as for the signal.

The overall detection efficiency was factorized as $e^{J/\psi}\epsilon^{B_s^0}$. The first factor $e^{J/\psi}$ is the probability of the generated tracks being accepted in the LHCb angular coverage, reconstructed, and selected. The second factor $\epsilon^{B_s^0}$ defines the efficiency of the trigger on the selected events. Both are indicated in Table 2, as calculated from Monte Carlo simulation, along with the number of selected events. Note that our measurement depends only on the ratios of efficiencies between signal and control channels.

The event yield for the selected data was determined from a fit to the $J/\psi K^+\pi^-$ invariant mass spectrum as shown in Fig. 3. In this fit, a constrained J/ψ mass was used in order to improve the B_s^0 mass resolution and therefore background rejection.
A component for the particular background source $B^0_s \rightarrow J/\psi \phi$, with $\phi \rightarrow K^+K^-$, was included in the fit, with a parametrization defined from simulation, yielding the result 8 ± 8 events. The complete suppression of this background was subsequently confirmed using the Armenteros–Podolanski [18] plot for the K^{*0} kinematics. The fit model also includes a Gaussian signal for the B^0 meson, and a combinatorial background component parameterized with an exponential function and an additional component to account for partially reconstructed $B \rightarrow J/\psi X$ [19]. This partially reconstructed component can be described as

$$\rho(M, \mathbf{M}, \mu, \kappa) \propto \left\{ \begin{array}{ll} e^{-\frac{1}{2}(\frac{M-\mu}{\kappa})^2} & \text{if } M > \mu, \\ e^{-\frac{1}{2}(\frac{M-\mu}{\kappa})^2 + \frac{M-\mu}{\kappa} - \mu} & \text{if } M \leq \mu, \end{array} \right. \quad (2)$$

where the parameters μ, κ and \mathbf{M} are allowed to float. The fitted signal according to this model is indicated in the third column of Table 2.

A small fraction of the selected sample contains two alternative candidates for the reconstructed event, which share three of the particles but differ in the fourth one. Those events, which amount to 3.8% (3.7%) in the signal (control) channels, were retained for the determination of the branching fraction.

4. Analysis of K^{*0} polarization

The four-particle $K^+\pi^- K^-\pi^+$ angular distribution describing the decay of B^0_s into two vector mesons ($K^{*0} \rightarrow K^+\pi^-\pi^+\pi^-$ and $K^{*0} \rightarrow K^-\pi^+\pi^-\pi^+$) is determined by three transversity amplitudes A_L, A_T and A_\perp. The relative fraction of these can be determined from the distribution of the decay products in three angles θ_1, θ_2 and ϕ. Here $\theta_1 (\theta_2)$ is the $K^+ (K^-)$ emission angle with respect to the direction opposite to the B^0_s meson momentum in the K^{*0} (K^{*0}) rest frame, and ϕ is the angle between the normals to the K^{*0} and K^{*0} decay planes in the B^0_s rest frame [5]. We will refer generically to the θ angle from now on, unless differences between θ_1 and θ_2 become relevant for the discussion. In a time-integrated and flavor-averaged analysis, and assuming the B^0_s mixing phase $\beta_s \approx 0$ as in the Standard Model, the angular distribution is given by [5, 21]

$$I(\theta_1, \theta_2, \phi) = \frac{d^3\Gamma}{d\cos\theta_1 d\cos\theta_2 d\phi} = \frac{1}{\Gamma_L} |A_L|^2 \cos^2 \theta_1 \cos^2 \theta_2 + \frac{1}{\Gamma_T} |A_T|^2 \frac{1}{2} \sin^2 \theta_1 \sin^2 \theta_2 \cos^2 \phi + \frac{1}{\Gamma_H} |A_\perp|^2 \frac{1}{2} \sin^2 \theta_1 \sin^2 \theta_2 \sin^2 \phi + \frac{1}{\Gamma_L} |A_L||A_\perp| \sin \delta_1 \frac{1}{2\sqrt{2}} \sin 2\theta_1 \sin 2\theta_2 \cos \phi. \quad (3)$$

We denote the polarization fractions by

$$f_k = \frac{|A_k|^2}{|A_L|^2 + |A_T|^2 + |A_\perp|^2}, \quad k = L, T, \perp, \quad (4)$$

and consequently $f_L + f_T + f_\perp = 1$. No CP violation in the mixing or in the decay has been considered. The interference terms related to the A_L amplitudes, both proportional to $\sin\phi$, have been neglected. $\Gamma_L, \Gamma_T, \Gamma_H$ are the total widths of the low and high mass eigenstates of the B^0_s meson, respectively, and δ_1 is the phase difference between A_L and A_T. The total decay width is defined as $\Gamma' = (\Gamma_L + \Gamma_T)/2$ and $\Delta\Gamma = \Gamma_L - \Gamma_T$. Note that as a consequence of time integration the relative normalization acquired by the CP-even and CP-odd terms is different. The values $\Gamma' = (0.062^{+0.034}_{-0.037}) \times 10^{12}$ s$^{-1}$ and $\Delta\Gamma = (0.679^{+0.012}_{-0.011}) \times 10^{12}$ s$^{-1}$ [4] were used.

The detector acceptance is compatible with being constant in θ. In contrast, it has a significant dependence on the K^{*0} polarization angle θ. The two-dimensional angular function $\epsilon(\cos\theta_1, \cos\theta_2)$ was studied with a full detector simulation. It drops to nearly zero asymmetrically as $\cos\theta_1 \approx -1$, as a consequence of the minimum p_T and p_T of the tracks imposed by the reconstruction.

The Monte Carlo simulation of the K^{*0} acceptance was extensively cross-checked using the $B^0 \rightarrow J/\psi K^{*0}$ control channel, taking advantage of the fact that the K^{*0} polarization in this channel was measured at the B-factory experiments [22, 23]. The function $\epsilon(\cos\theta_1, \cos\theta_2)$ has been projected onto the K^{*0} and K^{*0} axes separately, showing no appreciable difference, and a small average correlation, given the size of the simulated sample. We have then used the one-dimensional acceptance $\epsilon_\theta(\cos\theta)$ as the basis of our analysis, and determined it in five bins of $\cos\theta$. Since the longitudinal polarization fraction for the $B^0 \rightarrow J/\psi K^{*0}$ channel is well measured, a comparison between data and simulation is possible. Agreement was found including variations of the angular distribution with longitudinal and transverse K^{*0} momentum. In the region $\cos\theta > 0.6$ these variations were four times larger than for lower values of $\cos\theta$.

The background $\cos\theta$ distribution was studied in two 200 MeV/c^2 sidebands, defined below and above the B^0 signal region. Like the signal, it showed a dip close to $\cos\theta = 1$ and it was parameterized as $\epsilon_\theta = (1 + \beta \cos\theta)$. A one parameter fit for β gives the result $\beta = -0.18 \pm 0.13$.

An unbinned maximum likelihood fit was then performed to the data in a ± 50 MeV/c^2 window around the B^0_s mass, in the region $\cos\theta < 0.6$, according to the PDF

$$F(\theta_1, \theta_2, \phi) = (1 - \alpha)\epsilon_\theta(\theta_1)\epsilon_\theta(\theta_2)I(\theta_1, \theta_2, \phi) + \alpha(1 + \beta \cos\theta_1)I(\theta_1, \theta_2, \phi). \quad (5)$$

The background fraction α was determined from the fit to the B^0_s mass spectrum described in Section 2. Only three parameters were allowed to vary in the fit, namely f_L, f_T and the phase difference δ_1.

One-dimensional projections of the fit results are shown in Fig. 4. The consistency of the measurement in various regions of the K^{*0} phase space, and of the impact parameter of the daughter particles, was checked. The experimental systematic error on f_L was estimated from the variation of the measurements amongst those regions to be ± 0.03.

The acceptance for $B^0_s \rightarrow K^{*0}K^{*0}$ is not uniform as a function of proper decay time due to the cuts made on the IP of the kaons and pions, and a small correction to the polarization fractions, of order 3%, was applied in order to take into account this effect. It was calculated from the variation in the measured polarization amplitudes induced by including a parametrization of the time acceptance in Eq. (5). The different correction sign for each polarization fraction, as a consequence of the assumption $\Delta\Gamma \neq 0$.

The sensitivity of the f_L measurement with respect to small variations of the $\cos\theta$ distribution has been tested. These variations could be attributed to experimental errors not accounted for in the simulation or to interference with other partial waves in the $K\pi$ system. A high statistics study using $B^0_s \rightarrow J/\psi K^{*0}$ muon triggers revealed a small systematic difference between data and simulation in $\epsilon_\theta(\cos\theta)$ as $\cos\theta$ approaches -1, which was taken into account as a correction in our analysis. When this correction...
in varied by $\pm 100\%$, f_L varies by ± 0.02 which we consider as an additional source of systematic error. The total systematic on f_L is thus ± 0.04.

We finally measure the K^{*0} longitudinal polarization fraction $f_L = 0.31 \pm 0.12$ (stat.) ± 0.04 (syst.), as well as the transverse components f_\parallel and f_\perp. In the small sample available, the CP-odd component f_\perp appears to be sizable $f_\perp = 0.38 \pm 0.11$ (stat.) ± 0.04 (syst.). A significant measurement of δ_1 could not be achieved ($\delta_1 = 1.47 \pm 1.85$).

As seen in Eq. (3), due to a nonzero $\Delta \Gamma$ time integration changes the relative proportion between the various terms of the angular distribution, with respect to their values at $t=0$. If we call f^0_k the polarization fractions we would have measured under the assumption $\Delta \Gamma = 0$, it can be derived from Eq. (3) that our measured values are

$$f_k = f^0_k \left(1 + \frac{\Delta \Gamma}{2 \Gamma_0} \right)$$

with CP eigenvalue $\eta_k = +1, +1, -1$ for $k = L, \parallel, \perp$. Given the current knowledge of $\Delta \Gamma / \Gamma_0$ [4], the magnitude of the correction to f_\parallel amounts to 4.6%, and the associated systematic error related to $\Delta \Gamma$ error is 2.6%, which we have neglected in comparison to other sources.

5. Determination of the branching fraction

The results of the previous sections can be brought together to provide a determination of the branching fraction of the $B^0 \rightarrow K^{*0} \Lambda^{0}$ decay based upon the use of the normalization channel $B^0 \rightarrow J/\psi K^{*0}$ through the expression

$$B(B^0 \rightarrow K^{*0} \Lambda^{0}) = \lambda_{LL} \times \frac{\sigma_{\text{sig}}(B^0 \rightarrow J/\psi K^{*0})}{\varepsilon_{\text{se}l}^{B^0 \rightarrow J/\psi K^{*0}}} \times \frac{\sigma_{\text{sig}}(B^0 \rightarrow K^{*0} \Lambda^{0})}{\varepsilon_{\text{se}l}^{B^0 \rightarrow K^{*0} \Lambda^{0}}} \times \frac{N_{B^0 \rightarrow K^{*0} \Lambda^{0}}}{N_{B^0 \rightarrow J/\psi K^{*0}}} \times \frac{9}{4}$$

where $B_{\text{vis}}(B^0 \rightarrow J/\psi K^{*0})$, the visible branching ratio, is the product $B(B^0 \rightarrow J/\psi K^{*0}) \times B(J/\psi \rightarrow \mu^+ \mu^-) \times B(K^{*0} \rightarrow K^+ \pi^-)$. The numerical value of $B(B^0 \rightarrow J/\psi K^{*0}) = (1.33 \pm 0.06) \times 10^{-3}$ is taken from the world average in [4], $B(J/\psi \rightarrow \mu^+ \mu^-) = 0.0593 \pm 0.0006$ [4] and $B(K^{*0} \rightarrow K^+ \pi^-) = 21/3$ [4]. The ratio of b-quark hadronization factors that accounts for the different production rate of B^0 and B^0_\ast mesons is $f_s/F_d = 0.253 \pm 0.031$ [24]. The factor 9/4 is the inverse square of the 2/3 branching fraction of $K^{*0} \rightarrow K^+ \pi^-$. The number of candidate events in the signal and control channel data samples are designated by $N_{B^0 \rightarrow K^{*0} \Lambda^{0}}$ and $N_{B^0 \rightarrow J/\psi K^{*0}}$.

The correction factor λ_{LL} is motivated by the fact that the overall efficiency of the LHCb detector is a linear function of the K^{*0} longitudinal polarization f_L. Taking into account the measured value and errors reported in Section 4, Monte Carlo simulation was used to estimate $\lambda_{LL} = 0.812 \pm 0.059$.

We have considered two sources of systematic uncertainty associated to the ratio of selection efficiencies. The first source results from discrepancies between data and simulation in the variables related to track and vertex quality, and the second is related to particle identification. A small difference observed in the average impact parameter of the particles was corrected for by introducing an additional smearing to the track parameters in the simulation [25]. While the absolute efficiencies vary significantly as a function of vertex resolution, the ratio of efficiencies remains stable. We have assigned a 2% uncertainty to the ratio, after comparison between simulation and the $B^0 \rightarrow J/\psi K^{*0}$ data. The $K^+ \pi^-$ identification efficiency was determined using a sample of $B^0 \rightarrow J/\psi K^{*0}$ events selected without making use of the RICH detectors. As the signal channel contains one more kaon than the control channel, a correction factor of 0.989 ± 0.019 was applied to the branching fraction, and a 2% error was assigned to it. The efficiency of muon identification agrees with simulation within 1% [26]. All these factors are combined to produce an overall systematic uncertainty of 3.4% in the ratio of selection efficiencies. The uncertainty in the background model in the B^0_\ast mass fit (± 2 events) contributes an additional systematic error of 4.7%.

Trigger efficiencies can be determined, for particular trigger paths in LHCb, using the data driven algorithm described in [26]. This algorithm could be applied for the specific hadronic triggers used for $B^0 \rightarrow J/\psi K^{*0}$, but not for the small $B^0 \rightarrow K^{*0} \Lambda^{0}$ signal. The efficiency related to cuts on global event properties, applied during the 2010 data taking, is determined from J/ψ minimum bias triggers [26]. The result indicates a trigger efficiency of (26.8 $\pm 3.8\%$), smaller than the simulation result of (31.16 $\pm 0.63\%$) shown in Table 2. Although these are consistent within uncertainties, we nonetheless apply a -9% correction to the ratio of trigger efficiencies between $B^0 \rightarrow J/\psi K^{*0}$ and $B^0_\ast \rightarrow K^{*0} \Lambda^{0}$ channels, taking into account correlations in the trigger probability. A systematic error of 11% was assigned to uncertainty on the trigger efficiency, entirely limited by statistics, both in the signal and control channels. Detector occupancies, estimated by the average number of reconstructed tracks, are larger by 10% in the data than in the simulation. This implies an additional correction of $+4.5\%$ to the ratio of efficiencies, since the control channel is observed to be more sensitive to occupancy than the signal channel.

An $\sim 8\%$ S-wave contribution under the K^{*0} resonance in the $B^0 \rightarrow J/\psi K^{*0}$ channel has been observed by BaBar [23], and the data in a $\pm 70 \text{MeV/c}^2$ mass interval around the K^{*0} mass [27] yields a $9.0 \pm 3.6\%$ extrapolation to the $\pm 150 \text{MeV/c}^2$ mass window. The S-wave background doubles for the $K^{*0} \Lambda^{0}$ final state, and it may certainly have a different coupling for both channels. Our direct measurement reported in Section 2 of $(19 \pm 9\%)$ is still lacking precision to be used for this purpose. When evaluating the
branching fraction, we have assumed a 9% S-wave contribution, and assigned a systematic error of 50% to this hypothesis. A summary of the various contributions to the systematic error can be seen in Table 3.

Our final result is

$$B(B^0 \to K^{*0} \pi^0) = (2.81 \pm 0.46 \text{(stat.)} \pm 0.45 \text{(syst.)}) \times 10^{-5},$$

As we have seen at the end of Section 4, unequal normalization factors arise upon time integration of individual polarization amplitudes with well-defined CP-eigenvalues. This has the interesting implication that the time-integrated flavor-averaged branching fraction \(B_1\) as determined above cannot be directly compared with theoretical predictions solely formulated in terms of the decay amplitudes \(A_{1,2}^0\) and \(A_{1,2}\) \(B_0\). Meson oscillation needs to be taken into account, since two distinct particles with different lifetimes are involved. Owing to the fact that \(A_{1,2}\) \(\text{CP-odd}\), the relationship between these quantities reads as follows

$$B_0 = B_1 \left(1 + \frac{\Delta \Gamma}{2 \Gamma} (f_\perp + f_\parallel - f_\perp) \right).$$

According to our measurements of \(f_\perp + f_\parallel - f_\perp\), the correction is small (3% if current values are taken for \(\Delta \Gamma\)), and we do not apply it to our measurement.

6. Conclusion

The \(b \to s\) penguin decay \(B^0 \to K^{*0} \pi^0\) has been observed for the first time. Using 35 pb\(^{-1}\) of \(p\) collisions at 7 TeV centre-of-mass energy, LHCb has found 49.8 \pm 7.5 signal events in the mass interval \(\pm 50\text{ MeV}/c^2\) around the \(B^0\) mass. Analysis of the \(K^+\pi^-\) mass distributions shows that most of the signal comes from \(B^0 \to K^{*0} \pi^0\), with some S-wave contribution. The branching fraction has been measured, with the result \(B(B^0 \to K^{*0} \pi^0) = (2.81 \pm 0.46\text{(stat.)} \pm 0.45\text{(syst.)}) \times 10^{-5}\). The \(\text{CP-averaged longitudinal \(K^{*0}\) polarization fraction has also been measured to be \(f_\perp = 0.31 \pm 0.12\text{(stat.)} \pm 0.04\text{(syst.)}\), as well as the \(\text{CP-odd component \(f_\parallel\)} = 0.38 \pm 0.11\text{(stat.)} \pm 0.04\text{(syst.)}\). When we consider our measurement in association with that of [9], it is remarkable that the longitudinal polarization of the \(K^{*0}\) mesons seems to be quite different between \(B^0 \to K^{*0} \pi^0\) (\(f_\perp = 0.31 \pm 0.12\text{(stat.)} \pm 0.04\text{(syst.)}\)) and \(B^{0\ast} \to K^{*0} \pi^0\) (\(f_\perp = 0.80 \pm 0.10\text{(stat.)} \pm 0.06\text{(syst.)}\)), despite the fact that the two decays are related by a U-spin rotation. However, the ratio of the branching ratios of \(B^0\) and \(B^{0\ast}\) decays is consistent with \(1/\lambda^2\) where \(\lambda\) is the Wolfenstein parameter, as expected.

Acknowledgements

We would like to thank J. Matias for useful discussions. We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at CERN and at the LHCb institutes, and acknowledge support from the National Agencies: National Agencies: National Agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); CERN; NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCRR (Poland); ANCS (Romania); MINES and Rosatom (Russia); MICINN, XuntaGal and GENCAT (Spain); SNSF and SER (Switzerland); NAS (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge the support received from the ERC under FP7 and the Region Auvergne.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References
