Pore collapse during the fabrication process of rubber-like polymer scaffolds

Diego, R.B., Gómez Ribelles, J.L. and Salmerón-Sánchez, M. (2007) Pore collapse during the fabrication process of rubber-like polymer scaffolds. Journal of Applied Polymer Science, 104(3), pp. 1475-1481. (doi:10.1002/app.25202)

Full text not currently available from Enlighten.

Abstract

Rubbery polymer scaffolds for tissue engineering were produced using templates of the pore structure. The last step in the fabrication process consists of dissolving the template using a solvent that, at the same time, swells the scaffolding matrix that was a polymer network. Sometimes the polymer matrix is stretched so strongly that when the solvent is eliminated, i.e., the network is dried, it shrinks and is not able to recover its original shape and, consequently, the porous structure collapses. In this work we prepared, using the same fabrication process (the same template and the same solvent), a series of polymer scaffolds that results in collapsed or noncollapsed porous structures, depending on the polymer network composition. We explain the collapse process as a consequence of the huge volume increase in the swelling process during the template extraction due to the large distance between crosslinking points in the scaffolding matrix. By systematically increasing the crosslinking density the porous structure remains after network drying and the final interconnected pores were observed. It is shown that this problem does not take place when the scaffolding matrix consists of a glassy polymer network.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Salmeron-Sanchez, Professor Manuel
Authors: Diego, R.B., Gómez Ribelles, J.L., and Salmerón-Sánchez, M.
College/School:College of Science and Engineering > School of Engineering > Biomedical Engineering
Journal Name:Journal of Applied Polymer Science
ISSN:0021-8995
ISSN (Online):1097-4628
Published Online:26 February 2007

University Staff: Request a correction | Enlighten Editors: Update this record