Why working with porcine circulating serum amyloid A is a pig of a job

Soler, L., Molenaar, A., Merola, N., Eckersall, P.D. , Gutiérrez, A., Cerón, J.J., Mulero, V. and Niewold, T.A. (2013) Why working with porcine circulating serum amyloid A is a pig of a job. Journal of Theoretical Biology, 317, pp. 119-125. (doi:10.1016/j.jtbi.2012.10.011)

Full text not currently available from Enlighten.

Abstract

<p>Serum amyloid A (SAA) is a major acute phase protein in most species, and is widely employed as a health marker. Systemic SAA isoforms (SAA1, and SAA2) are apolipoproteins synthesized by the liver which associate with high density lipoproteins (HDL). Local SAA (SAA3) isoforms are synthesized in other tissues and are present in colostrums, mastitic milk and mammary dry secretions. Of systemic SAA the bulk is monomeric and bound to HDL, and a small proportion is found in serum in a multimeric form with a buried HDL binding site. In most species, systemic SAA could easily be studied by purifying it from serum of diseased individuals by hydrophobic interaction chromatography methods. For years, we were not able to isolate systemic pig SAA using the latter methods, and found that the bulk of pig SAA did not reside in the HDL-rich serum fractions but in the soluble protein fraction mainly as a multimeric protein.</p> <p>Based on these surprising results, we analysed in silico the theoretical properties and predicted the secondary structure of pig SAA by using the published pig primary SAA amino acid sequence. Results of the analysis confirmed that systemic pig SAA had the highest homology with local SAA3 which in other species is the isoform associated with non-hepatic production in tissues such as mammary gland and intestinal epithelium. Furthermore, the primary sequence of the pig SAA N-terminal HDL binding site did differ considerably from SAA1/2. Secondary structure analysis of the predicted alpha–helical structure of this HDL binding site showed a considerable reduction in hydrophobicity compared to SAA1/2. Based on these results, it is argued that systemic acute phase SAA in the pig has the structural properties of locally produced SAA (SAA3). It is proposed that in pig SAA multimers the charged N-terminal sequence is buried, which would explain their different properties.</p> <p>It is concluded that pig systemic SAA is unique compared to other species, which raises questions about the proposed importance of acute phase SAA in HDL metabolism during inflammation in this species.</p>

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Eckersall, Professor David
Authors: Soler, L., Molenaar, A., Merola, N., Eckersall, P.D., Gutiérrez, A., Cerón, J.J., Mulero, V., and Niewold, T.A.
College/School:College of Medical Veterinary and Life Sciences > Institute of Infection Immunity and Inflammation
Journal Name:Journal of Theoretical Biology
ISSN:0022-5193
Published Online:13 October 2013

University Staff: Request a correction | Enlighten Editors: Update this record