
 
 
 
 
 
Gill, J.M.R. and Al-Mamari, A. and Ferrell, W.R. and Cleland, S.J. and 
Packard, C.J. and Sattar, N. and Petrie, J.R. and Caslake, M.J. (2004) 
Effects of prior moderate exercise on postprandial metabolism and 
vascular function in lean and centrally obese men. Journal of the 
American College of Cardiology 44(12):2375-2382. 
 
 
http://eprints.gla.ac.uk/archive/00000739/ 
 
 
 
 
 

Glasgow ePrints Service 
http://eprints.gla.ac.uk 



  

Effects of prior moderate exercise on postprandial metabolism and vascular 
function in lean and centrally obese men 

 
Short Running Title: Exercise and postprandial vascular function 

 
Jason MR Gill PhD1, Ali Al-Mamari MD2, William R Ferrell MD, PhD 2, Stephen J 
Cleland MD, PhD3, Chris J Packard DSc1, Naveed Sattar MD, PhD 1, John R Petrie 

MD, PhD 2, Muriel J Caslake PhD1 
 

1Department of Vascular Biochemistry, University of Glasgow, Glasgow Royal 
Infirmary, Glasgow, UK 
2Department of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, 
UK 
3Department of Medicine and Therapeutics, University of Glasgow, Western Infirmary, 
Glasgow, UK 
 
Address for correspondence and present address for JMRG: 

   Dr Jason MR Gill 
Division of Neuroscience & Biomedical Systems  
Institute of Biomedical & Life Sciences 
West Medical Building 
University of Glasgow  
Glasgow, G12 8QQ 
United Kingdom 
 

   Telephone:  + 44 (0) 141 3302916 
   Facsimile:  + 44 (0) 141 3302915 

E-mail:  j.gill@bio.gla.ac.uk 
 

This work was supported by the British Heart Foundation, London, UK (PG/2001018).  
No author has any conflict of interested in relation to this paper. 
 
Word count: 5540 (including title page, abstracts, references and legends) 
 

 



JACC061504-1955RR 2

Structured Abstract  

Objectives – We investigated whether a session of prior exercise could ameliorate 

postprandial endothelial dysfunction. 

Background – Endothelial function is impaired following fat ingestion and this may be 

related to rises in triglyceride concentrations. Exercise reduces postprandial triglyceride 

concentrations.  

Methods – Ten lean (waist <90cm) and 10 centrally obese (waist >100cm) middle-aged 

men each underwent two oral fat tolerance tests (blood taken fasting and for eight hours 

after a high-fat meal containing 80g fat and 70g carbohydrate).  On the afternoon before 

one test, subjects performed a 90-minute treadmill walk (exercise); no exercise was 

performed before the control test.  Endothelium-dependent and -independent 

microvascular function was assessed using laser Doppler imaging in the fasted state and 

at two hourly intervals during the eight-hour postprandial period.   

Results – Exercise reduced both fasting and postprandial triglyceride concentrations by 

25% in both the lean and centrally obese groups (p<0.0005).  For all subjects taken 

together, exercise improved fasting endothelium-dependent function by 25% (p<0.05) 

and, although there was a significant postprandial decrease in both endothelium-

dependent and -independent function in both the control and exercise trials (p<0.01), 

postprandial endothelium-dependent and -independent function were 15% and 20% 

higher, respectively, in the exercise trial than the control trial (both p<0.05). 

Conclusions – A session of prior exercise improves fasting and postprandial vascular 

function in middle-aged men.  This may be one mechanism by which exercise 

influences cardiovascular risk.  

 

Keywords 

 Endothelial function, exercise, lipids, postprandial 
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Condensed Abstract  

Endothelial function is impaired following fat ingestion. We investigated whether a 

session of prior exercise could ameliorate postprandial endothelial dysfunction in 20 

middle-aged men.  Subjects performed two oral fat tolerance tests: one on the day 

following a 90-minute treadmill walk, the other after no exercise. Exercise improved 

fasting endothelial function by 25% and postprandial endothelial function by 15% (both 

p<0.05). This may be one mechanism by which exercise influences cardiovascular risk. 
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Abbreviations list 

LDL – low density lipoprotein 

HDL – high density lipoprotein 

VLDL – very low density lipoprotein 

TG – triglyceride 

NEFA – non-esterified fatty acid 

IL-6 – interleukin-6 

V
.
O2 max – maximal oxygen uptake 

ELISA – enzyme-linked immunoassay 

ACh – acetylcholine 

SNP – sodium nitroprusside  
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Introduction 

Free living humans spend the majority of their lives in the postprandial state and the 

changes to metabolism seen during the hours following meal ingestion are likely to play 

an important role in the atherosclerotic disease process.  It has been postulated that 

postprandial lipoproteins and their remnants directly infiltrate the arterial wall and 

accumulate in atheromatous plaques (1).  Furthermore, high concentrations of 

postprandial lipoproteins facilitate the exchange of neutral lipids between triglyceride-

rich and cholesterol-rich lipoproteins, promoting the atherogenic lipoprotein phenotype 

of small, dense LDL and low HDL (1). 

 More recent study has focused on non-lipid disturbances occurring in the 

postprandial state.  It is now evident that systemic inflammation is increased (2,3) and 

that endothelial function is impaired (4,5) postprandially, with some studies reporting 

that the postprandial decrement in endothelial function is proportional to the 

postprandial triglyceride rise (4,5).  As endothelial dysfunction and inflammation are 

central to atherogenic progression (6), it is likely that these transient postprandial 

changes, repeated on a daily basis, have implications for long-term risk of vascular 

disease.  There is now a large body of evidence indicating that a single session of 

moderate exercise can reduce subsequent postprandial lipemia by ~20-25% (7).  Thus, 

given the reported relationship between postprandial lipemia and endothelial 

dysfunction (4,5), we hypothesized that exercise of this nature could attenuate the 

postprandial decrement in endothelial function.   

We chose to study centrally obese middle-aged men, a typical population at 

which exercise for health guidelines are targeted.  We also included a comparative 

group of lean men.  These two groups differ in insulin sensitivity (8) and exhibit marked 

differences in insulin-regulated postprandial glucose and lipid metabolism (9).  A 

secondary aim of this study was to investigate whether the magnitude of exercise-
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induced changes to postprandial metabolism would differ between these two subject 

groups with differing metabolic profiles. 

  

Methods 

Subjects 

Ten lean men (waist circumference <90 cm) and 10 age-matched centrally obese (waist 

circumference >100 cm) men participated in this study.  Their physical characteristics 

are shown in Table 1.  All were apparently healthy normoglycemic non-smokers who 

displayed no symptoms of coronary artery disease during a clinical exercise stress test.  

None was taking any drugs thought to affect lipid or carbohydrate metabolism or 

vascular function.  The study was conducted with the approval of North Glasgow 

University Hospitals NHS Trust Ethics Committee and subjects gave written informed 

consent prior to participation. 

 

Study design 

Subjects participated in two oral fat tolerance tests in a randomized, balanced design 

with an interval of 7-14 days and different pre-conditions.  In one trial, subjects walked 

on a treadmill for 90 minutes at an intensity of ~50% of maximal oxygen uptake (V
.
O2 

max) (determined from a preliminary sub-maximal incremental treadmill test (10)) on 

the day prior to the oral fat tolerance test (exercise trial).  In the other trial subjects 

performed no exercise on the day preceding the oral fat tolerance test (control trial).  

Subjects weighed and recorded their dietary intake and abstained from alcohol 

for the two days prior to the first oral fat tolerance test and replicated this prior to the 

second fat tolerance test.  In addition, subjects were instructed to perform no exercise, 

other than the treadmill walk in the exercise trial, during the three days preceding each 

oral fat tolerance test.   
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Treadmill walk  

The walk in the exercise trial was performed on the afternoon prior to the oral fat 

tolerance test and completed ~16-18 hours prior to ingestion of the test meal. Oxygen 

uptake and carbon dioxide production were measured using an online gas analysis 

system (CPX/D BreezeEx v3.0, MedGraphics Cardiorespiratory Diagnostic Systems, St 

Paul, Minnesota, USA), heart rate was measured by short range telemetry (Polar 

Electroky, Kempele, Finland) and ratings of perceived exertion (11) were obtained at 

15-minute intervals during the walk.   

 

Oral fat tolerance tests 

On the morning of the oral fat tolerance tests subjects reported to the laboratory after a 

12-h fast.  Forearm microvascular function was assessed using laser Doppler imaging 

with iontophoresis (see below for description).  A venous cannula was then inserted 

and, after an interval of 10 minutes, a baseline blood sample was withdrawn.  Subjects 

then consumed a high-fat test meal comprising whipping cream, fruit, cereal, nuts and 

chocolate which provided 80g fat, 70g carbohydrate, 12g protein and 4.3 MJ energy.  

Further blood samples were obtained 20, 40, 60, 90, 120, 240, 360 and 480 minutes 

postprandially.    Microvascular function was assessed again following the 120, 240, 

360 and 480-minute blood samples.  Subjects rested throughout this day and consumed 

only water.  This was provided ad libitum during the first fat tolerance test and the 

volume and pattern of water intake was replicated during the second test.  

 

Assessment of microvascular function  

Peripheral microvascular function was assessed using a validated technique to quantify 

vasodilator responses to iontophoresis of 1% acetylcholine (ACh, endothelium 

dependent) and 1% sodium nitroprusside (SNP, endothelium independent), which has 

been described in detail elsewhere (12,13).  Subjects lay in a semi-recumbent position in 
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a temperature-controlled room, with their non-cannulated forearm supported by an 

armrest.  Iontophoresis chambers were attached to the volar aspect of the forearm with 

ACh and SNP introduced into the anodal and cathodal chambers, respectively.  Drug 

iontophoresis was by a constant-current controller (MIC-1ev; Moor Instruments Ltd.), 

incremented from 5 µA to 20 µA (8mC total charge).  Non-invasive measurement of 

skin perfusion was by a laser Doppler imager (Moor Instruments Ltd).  Twenty 

repetitive scans were performed, including a control scan (no current).  For each scan, 

median flux values within each chamber were determined, corrected for variation in 

skin resistance (12) and the area under the corrected flux vs time curve defined the 

overall microvascular response.  The within-day and between-day coefficients of 

variation for this method are both <10% (12).     

 

Analytical procedures 

Blood samples were collected into potassium EDTA tubes and lithium heparin tubes 

and placed on ice.  Plasma was separated within 15 minutes of collection.  Plasma for 

lipoprotein analyses was stored at 4°C, the remainder was divided into aliquots and 

stored at -70°C.  In the fasted state and 8 hours postprandially, a small sample of whole 

blood was retained for the determination of white blood cell count. 

Plasma VLDL cholesterol, LDL cholesterol and HDL cholesterol concentrations 

were determined in the fasted state according to the Lipid Research Clinics Program 

Manual of Laboratory Operations (14).  TG, glucose and non-esterified fatty acid 

(NEFA) concentrations were determined by enzymatic colorimetric methods using 

commercially available kits (Roche Diagnostics GmbH, Mannheim, Germany and 

Wako Chemicals USA, Inc., VA, USA).  Insulin was determined using a commercially 

available enzyme-linked immunoassay (ELISA) with <0.01% cross-reactivity with pro-

insulin (Mercodia AB, Uppsala, Sweden).  Interleukin-6 (IL-6) concentrations were 

determined using a commercially available high-sensitivity ELISA (R&D Systems Inc., 
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Oxon, UK).   White blood cell count was measured in a Coulter counter in the routine 

hospital hematology laboratory.  Other than lipoprotein analyses and white blood cell 

count, which were performed on fresh samples, all samples for each subject were 

analyzed in the same run. Coefficients of variation were <5% for all non-ELISA assays 

and <10% all for ELISA assays.   

 

Calculations and statistics 

Energy expenditure during the 90-minute treadmill walk was calculated using indirect 

calorimetry assuming no protein oxidation (15).  

Where appropriate, the time-averaged postprandial concentration – defined as 

the trapezium rule-derived area under the plasma concentration vs time curve, divided 

by the duration of postprandial observation period (8 h) – was used as a summary 

measure of the postprandial responses.  The postprandial rise in concentration was 

defined as the time-averaged postprandial concentration minus the fasting concentration 

(i.e. the incremental area under the concentration vs time curve, divided by eight hours).   

 Statistical analyses were performed using Statistica (version 6.0, StatSoft Inc, 

Tulsa) and Minitab (version 13.1, Minitab Inc, State College).  Data sets were tested for 

normality using Anderson-Darling normality tests and, where necessary, data were 

logarithmically transformed prior to statistical analysis.  Comparisons of fasting values 

and summary postprandial responses were made using two-way ANOVA (group x trial) 

with repeated measures on the trial (exercise or control) factor.  Where it was necessary 

to determine changes over the postprandial period three-way ANOVA (group x trial x 

time) were performed with repeated measures on the trial and time factors.  Post-hoc 

Fisher LSD tests were used to identify exactly where any differences lay.  A priori 

power calculations, based on our data for intra-subject reproducibility of ACh 

vasodilator responses (within-day and between-day coefficients of variation both <10% 

(12)) and postprandial TG responses (between-day coefficient of variation 10.1%, 
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unpublished data), indicated that 10 subjects per group would enable detection of 

exercise-induced changes of ~10% in either response.  Significance was accepted at the 

P < 0.05 level and data are presented as mean ± SEM unless otherwise stated.   

 

Results 

Treadmill walk 

For the 90-minute treadmill walk, the lean men walked at a speed of 6.0 ± 0.2 km.h-1, up 

a 4.3 ± 0.6% gradient and the centrally obese men walked at 5.8 ± 0.1 km.h-1, up a 3.6 ± 

0.5% gradient.  Mean V
.
O2 and heart rate was 22.1 ± 0.9 ml.kg-1.min-1 (50.6 ± 0.9% V

.

O2max) and 119 ± 3 beat.min-1 for the lean men and 20.5 ± 0.7 ml.kg-1.min-1 (51.1 ± 

1.1% V
.
O2max) and 126 ± 3 beat.min-1 for the centrally obese men.  The lean and 

centrally obese subjects rated the intensity of the walk as 11.8 ± 0.5 (between ‘fairly 

light’ and ‘somewhat hard’) and 12.9 ± 0.5 (‘somewhat hard’), respectively, on the Borg 

scale of 6-20 (11).  There were no significant differences between the lean and centrally 

obese men in any of the above factors.  However, as a consequence of their greater body 

mass, the overall gross energy expenditure of the walk was higher in the centrally obese 

men (3.7 ± 0.1 MJ) than the lean men (2.9 ± 0.2 MJ) (p = 0.003). 

 

Plasma concentrations in the fasted state 

Plasma concentrations in the fasted state are shown in Table 2.  Concentrations of TG, 

glucose, insulin and IL-6 were all significantly higher and the concentration of HDL 

cholesterol was significantly lower in the centrally obese than the lean men (all p < 

0.05).  Exercise reduced fasting TG concentrations to the same degree in the lean and 

centrally obese men (25% reduction for both, p = 0.001).  Concentrations of NEFA 

were significantly higher in the exercise trial than the control trial.  

 

Metabolic responses to the test meal 
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Figure 1 shows the metabolic responses to the test meal with summary measures of 

these responses shown in Table 3.  As expected, the centrally obese men exhibited 

greater postprandial metabolic perturbations than the lean men with significantly higher 

postprandial plasma TG, insulin, glucose and NEFA responses.  Exercise significantly 

reduced postprandial TG concentrations (and postprandial rises in TG concentration) by 

~25% in both the lean and centrally obese groups (p < 0.0005 for both).  ANOVA main 

effects indicated that the postprandial insulin response was significantly reduced by 

exercise (p = 0.037), but post hoc analysis revealed that this was only evident in the 

centrally obese group (11% reduction, p = 0.015), with no significant reduction 

occurring in the lean subjects (3% reduction, p = 0.63).  Postprandial NEFA (p = 0.006) 

concentrations were both significantly higher the exercise trial than the control trial, but 

postprandial glucose concentrations did not differ significantly between the two trials.   

 

Microvascular responses to ACh and SNP in the fasted and postprandial states 

Microvascular responses to ACh and SNP did not differ significantly between the lean 

and centrally obese groups. Data from the two groups were therefore combined for 

further statistical analyses.  These combined responses are shown in Figure 2.  The 

fasting ACh response was 25% higher in the exercise trial than the control trial (p = 

0.02).  In both trials, the ACh responses at 2, 4, 6 and 8 hours postprandially were 

significantly lower than the responses in the fasted state (p < 0.01) but the average ACh 

response over the postprandial observation period (mean of 2, 4, 6 and 8 hour 

responses) was 15% higher in the exercise trial than the control trial (10745 ± 986 flux 

units vs 9349 ± 857 flux units, p = 0.048).   In contrast to the ACh responses, SNP 

responses did not differ significantly between the control and exercise trials in the fasted 

state (p = 0.98).  In the control trial, SNP responses at 2, 4, 6 and 8 hours postprandially 

were significantly lower than the responses in the fasted state (p < 0.01) and in the 

exercise SNP responses 4, 6 and 8 hours postprandially were significantly lower than 
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fasting values (p < 0.05).  However, the average SNP response over the postprandial 

observation period was 20% higher in the exercise trial than the control trial (11111 ± 

847 flux units vs 9230 ± 790 flux units, p = 0.036).  

 

Inflammatory responses to the test meal 

The inflammatory responses to the test meal are shown in Figure 3.  In all trials IL-6 

concentrations rose significantly following ingestion of the test meal and were 

significantly higher than concentrations in the fasted state at the late postprandial time 

points.  The time-averaged postprandial IL-6 concentration did not differ significantly 

between control and exercise trials or between the lean and centrally obese groups and 

there was no significant group x trial interaction.  White blood cell counts were 

significantly higher at 8 hours postprandially than in the fasted state in both the control 

and exercise trials for both the lean and centrally obese subject groups (all p < 0.01).  

There were no significant differences between the control and exercise trials or between 

the lean and centrally obese subjects, nor were there any significant interactions.  

 

Discussion 

The major novel finding in this study is that a single session of moderate exercise 

significantly improved small vessel vasodilator function in both the fasted and 

postprandial states in a group of middle-aged men.  Prior exercise increased the ACh 

response in the fasted state by 25%, with no change in the SNP response, indicating that 

this improvement in vascular function was endothelium dependent.  This is likely to be 

clinically important as endothelial function measures predict future cardiovascular 

events and do so independent of conventional risk factors (6).  Moreover, although it 

has been demonstrated that endothelial function can be improved following a number of 

weeks of exercise training (16), we believe that this is the first study to demonstrate an 

improvement in endothelial function sustained until the day following a single exercise 
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session.  Thus, in common with changes in TG metabolism (7) and insulin sensitivity 

(17), exercise training-induced improvements to endothelial function may, at least in 

part, be a consequence of relatively short-term changes in response to recent exercise.   

 We assessed microvascular function using the relatively novel method of laser 

Doppler imaging with iontophoresis.  This non-invasive in vivo method, which assesses 

the cutaneous microcirculation, provides a robust surrogate marker of vascular function 

in other vascular beds.  Reduced cutaneous responsiveness to iontophoresis of ACh has 

been observed in hypercholesterolaemia (18) and diabetes (19), and in these conditions 

there is a parallel reduction of the ACh response in the forearm circulation 

(predominantly a skeletal muscle vascular bed) assessed by venous occlusion 

plethysmography (20-22).  The iontophoresis method has also revealed an inverse 

relationship between blood pressure and the ACh response (23), and ACh-induced 

vasodilatation of both forearm skin and muscle is reduced in essential hypertension 

(24).  Moreover, attenuated cutaneous responses to ACh iontophoresis of heart 

transplant patients (25) are paralleled by reduced responsiveness of coronary blood 

vessels to ACh in this group (26).  Thus, many conditions affecting the cardiovascular 

system appear to result in global endothelial dysfunction, affecting cutaneous vessels as 

well as vascular beds more directly involved in the pathogenesis of vascular disease. 

 We found no significant correlations between the exercise-induced change in 

fasting TG, insulin, glucose, NEFA, IL-6 or white blood cell count, and the exercise-

induced change in the fasting ACh response (data not shown).  This is in accord with a 

recent report which found that changes to endothelial function elicited by longer-term 

exercise programs were not significantly related to the exercise-induced changes in a 

number of cardiovascular risk factors (16), suggesting that exercise may improve 

endothelial function via other mechanisms.  The improvement in the fasting ACh 

response following exercise may be due to increased blood flow augmenting shear 

stress on the endothelium, thereby stimulating nitric oxide (NO) release.  Indeed recent 
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evidence suggests that this is evident in vascular beds which are not actively exercising 

as well as in the exercising tissues (27).  Furthermore, the effects of moderate exercise 

on blood flow persist for a number of hours following exercise cessation; it has been 

reported that leg blood flow is almost 40% higher during the day following a 2-hour 

moderate intensity exercise session than following a day with no exercise (28) and that 

subcutaneous adipose tissue blood flow is elevated for a number of hours post-exercise 

(29).  This prolonged increase in blood flow during recovery from exercise may enable 

augmented endothelial function to persist for a number of hours post-exercise, in line 

with the present findings.  

 In both the control and the exercise trials, the ACh response declined 

significantly postprandially, in agreement with other reports (4,5).  However, 

postprandial ACh responses were significantly higher in the exercise trial than the 

control trial, indicating that prior exercise acted to oppose the postprandial decrement.  

Interestingly, there was a postprandial decline in the SNP response which tracked the 

decrease in the ACh response, indicating that the postprandial decrement in 

microvascular function cannot be attributed with certainty to endothelial as opposed to 

smooth muscle vascular structures.  However, as postprandial SNP responses were 

higher in the exercise than the control trial, it seems likely that prior exercise also 

ameliorated any postprandial decline in vascular smooth muscle vasoactivity.  These 

findings mirror the effects of fenofibrate on vasodilator function in 

hypertriglyceridaemic patients (30) in which fibrate treatment reduced TG 

concentrations and improved resistance vessel vasodilator responses to both ACh and 

SNP to a similar degree. Thus, it is possible that the TG-mediated impairment of 

resistance vascular function may, to some extent, be mediated by endothelium-

independent mechanisms and this may differ somewhat from the effects of TG on 

conduit vessel vascular function, where it appears that that the postprandial decrement 

in vasodilator response is mediated by endothelium dependent mechanisms (4,5).  
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Certainly, in vitro studies have demonstrated that remnants and fatty acids derived from 

the hydrolysis of TG-rich lipoproteins are cytotoxic to vascular smooth muscle cells 

(31,32).  Moreover cardiovascular risk factors such as hypercholesterolaemia (33), 

hypertension (34) and type 2 diabetes (20) have been linked to the perturbance of both 

endothelium dependent and independent vasodilation (however measured) and their 

treatments often improve both responses (22,33).    

 Since ingestion of high-fat meals blunts vasodilator function (4,5), but ingestion 

of a low-fat meal does not (4), it seems likely that the postprandial decrement in 

vascular function is a consequence of fat ingestion per se.  However, as yet, the 

mechanisms responsible have not been fully elucidated.  Some studies have reported 

that the postprandial decrement in vasodilator function correlates with the postprandial 

rise in TG (4,5), but this is not a universal finding (35) and in the present study we 

found no significant relationships between postprandial TG concentrations or rises in 

concentration and postprandial ACh responses in either the control or exercise trial (data 

not shown).  We similarly found no significant relationships between exercise-induced 

changes in postprandial TG concentrations or rises in concentration and exercise-

induced changes in postprandial ACh responses (data not shown), suggesting that 

differences in TG may not explain the changes in ACh response observed in the present 

study.  Alternatively postprandial increases in systemic inflammation may contribute to 

endothelial dysfunction (3); in the present study there was clear evidence of a 

postprandial increase in inflammation with rises in IL-6 concentrations and white blood 

cell counts.  However, we observed similar postprandial inflammatory responses in the 

control and exercise trials suggesting that either differences in these inflammatory 

markers were not a major mediator in the exercise-induced improvements to 

postprandial vasodilator responses or that the study had insufficient power to detect a 

clear effect of exercise on these inflammatory responses.  A further possibility is that 

prior exercise influenced endothelial function through effects on postprandial oxidative 
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stress or anti-oxidant mechanisms.  It has been reported that co-ingestion of anti-oxidant 

vitamins with fat abolishes the postprandial decrement in endothelial function (36) and 

moderate exercise may act though a similar mechanism as it has been demonstrated that 

moderate exercise training increases plasma antioxidant defenses (37).  Whether this 

occurs in response to a single exercise session warrants further investigation.  

Alternatively, it is possible that the higher postprandial ACh responses seen after 

exercise were a direct consequence of the higher ACh baseline response, rather than a 

specific effect of exercise on postprandial metabolism. 

 We did not observe significant differences in microvascular function between 

the lean and the centrally obese subjects in this study, however, ACh responses were, 

overall, ~10% lower in the centrally obese than the lean subjects. This difference 

between groups was substantially smaller than that observed for the postprandial TG 

response (control trial response 79% higher in the centrally obese subjects, p < 0.01, see 

Table 2) or the postprandial insulin response (106% higher, p < 0.01) and suggests that 

the effects of obesity on microvascular function may be more subtle than its effects on 

TG metabolism and insulin sensitivity. The present study, with 10 subjects in each 

group, had insufficient power to determine whether this small difference in 

microvascular function between the groups was real and further investigation in a larger 

study is warranted to address this issue. 

 The results from this study demonstrate that a session of prior moderate exercise 

effectively reduces postprandial TG concentrations in both lean and centrally obese 

middle-aged men.  The percentage reductions in TG were remarkably similar in the two 

groups – ~25% for each – but the centrally obese subjects, by virtue of their higher TG 

concentrations experienced a greater absolute TG fall.  The percentage TG reductions 

observed are comparable with those found in other reports (7).  However, these earlier 

reports have generally studied subjects with lower TG concentrations than those of the 

centrally obese subjects in the present study and thus our findings extend the evidence 
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base demonstrating the efficacy of moderate exercise in reducing postprandial lipemia 

in a range of study populations.  Importantly, despite many of the men being unused to 

walking long distances, all managed to complete the 90-minute treadmill walk without 

difficulty and none complained of undue tiredness or muscle soreness, indicating that, 

while this goes beyond the current ‘30 minutes per day’ exercise recommendation (38), 

walks of this intensity and duration are not beyond the capability of inactive centrally 

obese middle-aged men. 

 In conclusion, this study has demonstrated that a single session of moderate 

intensity exercise, which was well tolerated by the study participants, improved fasting 

and postprandial resistance vessel vasodilator function in a group of middle-aged men.  

Furthermore, prior exercise reduced postprandial lipemia to the same degree in lean and 

centrally obese men and reduced postprandial insulin concentrations in the centrally 

obese men.  These findings indicate that moderate exercise is effective in attenuating 

many of the adverse metabolic and vascular changes occurring during the hours after 

ingestion of dietary fat and thus contribute to our understanding of the mechanisms by 

which exercise can reduce cardiovascular risk.  
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Figure 1 

Postprandial plasma TG concentrations (top panels), insulin (2nd top panels), glucose 

(2nd bottom panels) and NEFA (bottom panels) concentrations in the lean (n =10, left 

panels) and centrally obese (n = 10, right panels) in the control and exercise trials.  

Summary statistics for these responses are shown in Table 3. 

 

Figure 2  

Microvascular responses to ACh (top panel) and SNP (bottom panel) in the fasted and 

postprandial states for the lean and centrally obese subjects combined in the control and 

exercise trials (n = 20).  Statistics performed on logarithmically transformed data. 

*different from fasting value in the same trial, p < 0.05 (** p < 0.01), †difference 

between control and exercise trials at the same time point, p < 0.05. 

 

Figure 3 

Postprandial plasma IL-6 (top panels) and white blood cell counts (bottom panels) in the 

lean (n =10, left panels) and centrally obese (n = 10, right panels) in the control and 

exercise trials.   different from fasting value in the same trial, p < 0.05 (** p < 0.01), 
†difference between control and exercise trials at the same time point, p < 0.05.  
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Table 1. Subject characteristics.   
 

 Lean men (n = 10) Centrally obese men (n = 10) 

Age (years) 47.9 ± 8.4 46.5 ± 10.5 

Waist (cm) 82.3 ± 5.4 107.1 ± 8.0* 

Body mass index (kg.m-2) 23.0 ± 1.9 31.7 ± 4.7* 

Sum of 4 skinfolds† 39.8 ± 8.4 88.3 ± 43.1* 

Systolic blood pressure 
(mm Hg) 

112 ± 5 118 ± 12 

Diastolic blood pressure 
(mm Hg) 

70 ± 7 74 ± 7 

Maximal oxygen uptake‡ 
(ml.kg.-1min-1)  

43.9 ± 6.2 40.6 ± 6.6 

 

Data are mean ± SD. *significantly different from lean group, p < 0.01 
†Skinfolds are biceps, triceps, subscapular and suprailiac. 
‡Estimated from a 4-stage submaximal incremental treadmill test (10).  
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Table 2. Plasma concentrations in the fasted state 
 

 Lean men (n = 10) Centrally obese men (n = 10) 

 Control Exercise Control Exercise 

 
P for 
group 

 
P for 
trial 

TG*  
(mmol.l-1)  

0.85 ± 0.08 0.64 ± 0.05 1.74 ± 0.20 1.31 ± 0.20 <0.0005 0.001 

Total cholesterol 
(mmol.l-1) 

4.96 ± 0.24 5.01 ± 0.23 5.00 ± 0.28 4.82 ± 0.23 0.82 0.38 

HDL cholesterol 
(mmol.l-1) 

1.32 ± 0.09 1.37 ± 0.09 0.97 ± 0.07 1.00 ± 0.06 0.005 0.11 

LDL cholesterol 
(mmol.l-1) 

3.24 ± 0.15 3.33 ± 0.16 3.36 ± 0.24 3.27 ± 0.22 0.92 0.99 

Glucose  
(mmol.l-1) 

5.04 ± 0.12 5.00 ± 0.10 5.60 ± 0.21 5.56 ± 0.16 0.017 0.45 

Insulin 
(µU.ml-1) 

4.03 ± 0.65 3.97 ± 0.35 7.95 ± 1.23 7.63 ± 1.54 0.017 0.63 

NEFA 
(mmol.l-1) 

0.35 ± 0.03 0.44 ± 0.03 0.44 ± 0.03 0.46 ± 0.03 0.17 0.017 

IL-6* 
(pg.ml-1) 

0.95 ± 0.14 0.78 ± 0.10 1.93 ± 0.28 1.61 ± 0.22 0.002 0.13 

 

Data are mean ± SEM.  

*Statistics performed on logarithmically transformed data 

P for group – ANOVA main effect for lean vs centrally obese 

P for trial – ANOVA main effect for control vs exercise 

No significant group by trial interactions 
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Table 3. Metabolic responses to the test meal 
 
 Lean men (n = 10) Centrally obese men (n = 10) 

 Control Exercise Control Exercise 

 
P for 
group 

 
P for 
trial 

Postprandial TG 
concentration*  

(mmol.l-1)  

1.40 ± 0.12 1.05 ± 0.07 2.51 ± 0.32 1.91 ± 0.33 0.002 <0.0005 

Postprandial TG rise 
in concentration* 

(mmol.l-1) 

0.55 ± 0.06 0.41 ± 0.04 0.77 ± 0.15 0.60 ± 0.14 0.282 <0.0005 

Postprandial insulin 
concentration*  

(µU.ml-1) 

8.61 ± 0.79 8.36 ± 0.76 17.75 ± 2.62 15.86 ± 2.96 0.003 0.037 

Postprandial glucose 
concentration   

(mmol.l-1) 

5.15 ± 0.11 5.18 ± 0.09 5.77 ± 0.14 5.73 ± 0.15 0.003 0.80 

Postprandial NEFA 
concentration   

(mmol.l-1) 

0.35 ± 0.01 0.38 ± 0.02 0.41 ± 0.02 0.45 ± 0.02 0.009 0.006 

 

Postprandial concentrations and postprandial rises in concentration calculated as the 

area under the total or incremental concentration vs time curve divided by the duration 

of the postprandial observation period (8 h). 

Data are mean ± SEM.  

*Statistics performed on logarithmically transformed data 

P for group – ANOVA main effect for lean vs centrally obese 

P for trial – ANOVA main effect for control vs exercise 

No significant group by trial interactions 
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