Herpes simplex virus type 1 immediate-early protein vmw110 induces the proteasome-dependent degradation of the catalytic subunit of DNA-dependent protein kinase

Parkinson, J., Lees-Miller, S.P. and Everett, R.D. (1999) Herpes simplex virus type 1 immediate-early protein vmw110 induces the proteasome-dependent degradation of the catalytic subunit of DNA-dependent protein kinase. Journal of Virology, 73(1), pp. 650-7.

Full text not currently available from Enlighten.

Publisher's URL: http://jvi.asm.org/content/73/1/650.abstract

Abstract

Herpes simplex virus type 1 (HSV-1) infection causes the active degradation of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), and this process is reliant on the expression of the HSV-1 immediate-early protein Vmw110. In this study we investigated in more detail the mechanism by which the degradation occurs, the domains of Vmw110 which are required, and whether Vmw110 is by itself sufficient for the effect. We found that proteasome inhibitors prevented the degradation of DNA-PKcs, indicating the involvement of a proteasome pathway. Furthermore, the continued activity of DNA-PK during infection in the presence of these inhibitors indicated that Vmw110 does not directly alter the enzyme activity of DNA-PKcs prior to its degradation in a normal infection. Indeed, Vmw110 was found to bind to neither the catalytic nor Ku subunits of DNA-PK. Using mutant Vmw110 viruses we show that the RING finger domain of Vmw110 is essential for the induced degradation of DNA-PKcs but that the ability of Vmw110 to bind to a cellular ubiquitin-specific protease (HAUSP) is not required. When expressed in the absence of other viral proteins, Vmw110 was sufficient to cause the degradation of DNA-PKcs, indicating that the effect on the stability of DNA-PKcs was a direct consequence of Vmw110 activity and not an indirect Vmw110-dependent effect of virus infection. Finally, the Vmw110-induced degradation of DNA-PKcs and loss in DNA-PK activity appears to be beneficial to HSV-1 infection, as virus replication was more efficient in cells lacking DNA-PKcs, especially at low multiplicities of infection.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Everett, Professor Roger
Authors: Parkinson, J., Lees-Miller, S.P., and Everett, R.D.
College/School:College of Medical Veterinary and Life Sciences > School of Infection & Immunity
Journal Name:Journal of Virology
Journal Abbr.:J. Virol.
ISSN:0022-538X
ISSN (Online):1098-5514

University Staff: Request a correction | Enlighten Editors: Update this record