Inhibition of poly(ADP-ribose) polymerase enhances the toxicity of 131I-metaiodobenzylguanidine/topotecan combination therapy to cells and xenografts that express the noradrenaline transporter

McCluskey, A.G., Mairs, R.J. , Tesson, M., Pimlott, S.L. , Babich, J.W., Gaze, M.N., Champion, S. and Boyd, M. (2012) Inhibition of poly(ADP-ribose) polymerase enhances the toxicity of 131I-metaiodobenzylguanidine/topotecan combination therapy to cells and xenografts that express the noradrenaline transporter. Journal of Nuclear Medicine, 53(7), pp. 1146-1154. (doi: 10.2967/jnumed.111.095943)

Full text not currently available from Enlighten.

Abstract

Targeted radiotherapy using 131I-metaiodobenzylguanidine (131I-MIBG) has produced remissions in some neuroblastoma patients. We previously reported that combining 131I-MIBG with the topoisomerase I inhibitor topotecan induced long-term DNA damage and supraadditive toxicity to noradrenaline transporter (NAT)–expressing cells and xenografts. This combination treatment is undergoing clinical evaluation. This present study investigated the potential of poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP-1) inhibition, in vitro and in vivo, to further enhance 131I-MIBG/topotecan efficacy. Methods: Combinations of topotecan and the PARP-1 inhibitor PJ34 were assessed for synergism in vitro by combination-index analysis in SK-N-BE(2c) (neuroblastoma) and UVW/NAT (NAT-transfected glioma) cells. Three treatment schedules were evaluated: topotecan administered 24 h before, 24 h after, or simultaneously with PJ34. Combinations of PJ34 and 131I-MIBG and of PJ34 and 131I-MIBG/topotecan were also assessed using similar scheduling. In vivo efficacy was measured by growth delay of tumor xenografts. We also assessed DNA damage by γH2A.X assay, cell cycle progression by fluorescence-activated cell sorting analysis, and PARP-1 activity in treated cells. Results: In vitro, only simultaneous administration of topotecan and PJ34 or PJ34 and 131I-MIBG induced supraadditive toxicity in both cell lines. All scheduled combinations of PJ34 and 131I-MIBG/topotecan induced supraadditive toxicity and increased DNA damage in SK-N-BE(2c) cells, but only simultaneous administration induced enhanced efficacy in UVW/NAT cells. The PJ34 and 131I-MIBG/topotecan combination treatment induced G2 arrest in all cell lines, regardless of the schedule of delivery. In vivo, simultaneous administration of PJ34 and 131I-MIBG/topotecan significantly delayed the growth of SK-N-BE(2c) and UVW/NAT xenografts, compared with 131I-MIBG/topotecan therapy. Conclusion: The antitumor efficacy of topotecan, 131I-MIBG, and 131I-MIBG/topotecan combination treatment was increased by PARP-1 inhibition in vitro and in vivo.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Tesson, Dr Mathias and Pimlott, Dr Sally and Mairs, Professor Robert and Champion, Dr Sue and Boyd, Dr Marie
Authors: McCluskey, A.G., Mairs, R.J., Tesson, M., Pimlott, S.L., Babich, J.W., Gaze, M.N., Champion, S., and Boyd, M.
College/School:College of Medical Veterinary and Life Sciences > School of Cancer Sciences
College of Medical Veterinary and Life Sciences > School of Psychology & Neuroscience
Journal Name:Journal of Nuclear Medicine
ISSN:0161-5505
Published Online:11 June 2012

University Staff: Request a correction | Enlighten Editors: Update this record