Quaternary uplift of northern England

Westaway, R. (2009) Quaternary uplift of northern England. Global and Planetary Change, 68(4), pp. 357-382. (doi: 10.1016/j.gloplacha.2009.03.005)

Full text not currently available from Enlighten.

Abstract

Upland flats, attributable to erosion, have long been recognised in the landscape of the Lake District region of NW England, at altitudes of up to ~ 800 m O.D. Extrapolation using uplift rates derived from dated Pleistocene sites (karstic caves and other features) in the adjacent Pennine uplands suggests that if this succession of flats formed close to sea-level they date from the Middle Pliocene onwards, indicating a subsequent time-averaged uplift rate of almost 0.3 mm a− 1. Numerical modelling indicates that erosion of surrounding areas at a typical rate of 0.2 mm a− 1 since 3.1 Ma could have caused this uplift, as well as constraining the local effective viscosity of the lower crust as ~ 4 × 1018 Pa s and the typical local Moho temperature as ~ 650 °C. It is thus feasible that most of the topography of northern England has developed since the Middle Pliocene, as a consequence of coupling between erosion and the resulting induced flow in the lower continental crust. The much faster vertical crustal motions indicated in this part of northern England, compared with SE England, are thus mainly a consequence of much greater mobility of the lower crust in the north, due to its younger thermal age and the heating effect of radioactive Palaeozoic granites. Uplift of this magnitude, which has previously gone unrecognised, may have affected post-Pliocene global climate.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Westaway, Dr Robert
Authors: Westaway, R.
College/School:College of Science and Engineering > School of Engineering > Systems Power and Energy
Journal Name:Global and Planetary Change
Publisher:Elsevier
ISSN:0921-8181

University Staff: Request a correction | Enlighten Editors: Update this record