Coupling of neural activity and fMRI-BOLD in the motion area MT

Lippert, M.T., Steudel, T., Ohl, F., Logothetis, N.K. and Kayser, C. (2010) Coupling of neural activity and fMRI-BOLD in the motion area MT. Magnetic Resonance Imaging, 28(8), pp. 1087-1094. (doi: 10.1016/j.mri.2009.12.028)

Full text not currently available from Enlighten.

Abstract

The fMRI-BOLD contrast is widely used to study the neural basis of sensory perception and cognition. This signal, however, reflects neural activity only indirectly, and the detailed mechanisms of neurovascular coupling and the neurophysiological correlates of the BOLD signal remain debated. Here we investigate the coupling of BOLD and electrophysiological signals in the motion area MT of the macaque monkey by simultaneously recording both signals. Our results demonstrate that a prominent neuronal response property of area MT, so-called motion opponency, can be used to induce dissociations of BOLD and neuronal firing. During the presentation of a stimulus optimally driving the local neurons, both field potentials [local field potentials (LFPs)] and spiking activity [multi-unit activity (MUA)] correlated with the BOLD signal. When introducing the motion opponency stimulus, however, correlations of MUA with BOLD were much reduced, and LFPs were a much better predictor of the BOLD signal than MUA. In addition, for a subset of recording sites we found positive BOLD and LFP responses in the presence of decreases in MUA, regardless of the stimulus used. Together, these results demonstrate that correlations between BOLD and MUA are dependent on the particular site and stimulus paradigm, and foster the notion that the fMRI-BOLD signal reflects local dendrosomatic processing and synaptic activity rather than principal neuron spiking responses.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Kayser, Professor Christoph
Authors: Lippert, M.T., Steudel, T., Ohl, F., Logothetis, N.K., and Kayser, C.
College/School:College of Medical Veterinary and Life Sciences > School of Psychology & Neuroscience
Journal Name:Magnetic Resonance Imaging
ISSN:0730-725X

University Staff: Request a correction | Enlighten Editors: Update this record