
 

 
 
 
 
 
 
 
 
 
Sventek, J., and Koliousis, A. (2012) Unification of publish/subscribe 
systems and stream databases: the impact on complex event processing. 
Lecture Notes in Computer Science, 7662. pp. 292-311. ISSN 0302-9743 

 
 
 
 
Copyright © 2012 IFIP International Federation for Information Processing 

 
 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 

 
 
The content must not be changed in any way or reproduced in any format 
or medium without the formal permission of the copyright holder(s) 

 

 
When referring to this work, full bibliographic details must be given 

 
 
 
http://eprints.gla.ac.uk/69024/ 

 
 
 
  Deposited on: 15 January 2013 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 

http://eprints.gla.ac.uk/74048/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


Unification of Publish/Subscribe Systems and
Stream Databases

The Impact on Complex Event Processing

Joseph Sventek and Alexandros Koliousis

School of Computing Science, University of Glasgow

Abstract. There is increasing demand for complex event processing of
ever-expanding volumes of data in an ever-growing number of applica-
tion domains. Traditional complex event processing technologies, based
upon stream database management systems or publish/subscribe sys-
tems, are adept at handling many of these technologies. A growing num-
ber of hybrid complex event detection scenarios require features of both
technologies.
This paper describes a unification of publish/subscribe and stream data-
base concepts to tackle all complex event processing scenarios, with par-
ticular emphasis upon hybrid scenarios. The paper describes the archi-
tecture for this unified system, the automaton programming language
that it supports, and the run-time system that animates automata. Sev-
eral examples of automata that exploit the system’s unified nature are
discussed. Raw automata performance is characterised, and its relative
performance against Cayuga with respect to stock trend analysis is pre-
sented.

Keywords: complex event processing, user-defined functions, stream,
automata, publish/subscribe, cache

1 Introduction

There is increasing demand for complex event processing of ever-expanding vol-
umes of data in an ever-growing number of application domains. This explosive
growth is fueled by a number of trends in the industry: the availability of inex-
pensive wireless sensor nodes, the rapid penetration of smart phones in the mo-
bile telephony market, and the growth in availability and sophistication of cloud
computing resources. The data deluge resulting from the convergence of these
trends dictates that we develop ever more functional and performant complex
event processing systems in order to mine the data for information of business
or personal importance.

Complex event processing is traditionally achieved using two different tech-
nologies: stream database management systems, in which one is able to look
backward in time via select statements, and publish/subscribe systems, in which
one is able to look forward in time via subscriptions to notifications. Some event
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processing scenarios naturally fall into one or the other of these categories; in-
creasingly, there are a number of hybrid scenarios in which both capabilities are
required - i.e. the ability to process received notifications is dependent upon ac-
cess to global and local state representing historical and/or policy information
that is crucial to the correct processing of the data.

This paper describes a unification of publish/subscribe and stream database
concepts to address these hybrid scenarios. At the same time, the resulting sys-
tem should also handle scenarios for which the unified nature is not required.
The keystone of this unified system is a topic-based, publish/subscribe cache.
Topics are organised in memory as either append-only stream tables or static
relational tables. Ad hoc select queries, enhanced with time windows, can be
presented to the cache at any time. In imperative programming language (the
Glasgow Automaton Programming Language, GAPL) is used to program au-
tomata to detect complex event patterns over the cached streams and relations.
When registered against the cache, each automaton subscribes to chosen topics
and receives each event inserted into those topics through the publish/subscribe
infrastructure for further processing. Automata can also access (modify) the re-
lational tables, publish new tuples into stream tables, and send events to external
processes.

The remainder of the paper is as follows: firstly, we describe related work
to place our system in context. This is followed by a discussion of the cache
architecture, the automaton programming language, and the automaton execu-
tion model. Section 6 evaluates the performance of the system from a number
of perspectives, concluding with a performance comparison against Cayuga for
several, relevant stock analysis queries. The paper concludes with a discussion
of the impact that such a unified system has on future complex event processing
and future work.

2 Related work

Codd’s relational model structures data into a mathematical object, a relational
database, where new information can be extracted using algebraic operators such
as projection, selection, union, or join [2]. The ordering of columns (attributes)
and rows (tuples) in a relational database is immaterial. On the other hand, data
streams are modelled as append-only databases supporting continuous queries
for which the relative temporal ordering of tuples is significant.

Set τ = ∞
FOREVER DO
S = {select attribute from Table [since τ]}
τ = argminj∈S tj
Return results to user
Sleep for t seconds

ENDLOOP

Fig. 1. The continuous query execution model [1]
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subscribe event to Topic;
subscribe x to Timer;
window w;
initialization {

w = Window(sequence, SECS, t);
}
behavior {

if (currentTopic() == ‘Topic’)
append(w, Sequence(event.attribute);

else
if (currentTopic() == ‘Timer’) {

send(w);
w = Window(sequence, SECS, t);

}
}

Fig. 2. The continuous query execution model as an automaton

The continuous semantics of queries were first defined in Tapestry [1]. Roughly
speaking, a continuous query is a monotonic query – or, equivalently, a non-
blocking query [3] – that yields incremental results over a sliding time window
whose duration is defined by the current execution time and the last timestamp
observed in the previous result set. Figure 1 shows a variant of the basic con-
tinuous query execution model, as proposed in [1]. This model inspired the first
generation of interactions with our cache, where continuous queries over network
flow streams were used to produce real-time visualisations of home networking
traffic [4]. Figure 2 is an equivalent implementation in GAPL.

Since TQL, Tapestry’s query language, numerous variants of SQL, the lan-
guage of Codd’s relations, have been introduced in the literature, capturing those
continuous semantics. CQL, for instance, the continuous query language of the
STREAM data management system [5], provides users with a comprehensive
list of time-, or count-based sliding window operators to express non-monotonic
relations over stream attributes – in other words, stateful relations. Thus, it
became apparent to us that the use of sliding windows in stream processing
is two-fold. Apart from producing incremental results, sliding windows are also
used to maintain the intermediate state necessary for order-agnostic operators
– mainly, aggregation and join.

Closely related to this work are user-defined aggregate functions, e.g. like
those provisioned in Aurora’s SQuAl [6]. A user-defined aggregate function con-
sists of three parts: an initialization function that defines (local) state, opening
a window within which the computation takes place; an iteration function that
updates state; and a termination function that returns state, when the window
closes. User-defined aggregates have been proven to be a sufficient extension to
SQL for modeling complex patterns over data streams as finite state machines [3].

At this point, two further analogies can be drawn between user-defined func-
tions and our automata. First, an automaton can not only update local state, but
also append tuples to other streams, locally (via publish) or remotely (via send).
Second, in contrast to other stream database languages, state need not neces-
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sarily be local: using associations, an automaton can modify relational tables,
whose current state is immediately available to the rest of the system.

Non-deterministic finite automata, a model used in the pattern languages
of Cayuga[7, 8] and SASE [9–11], further extend the notion of user-defined ag-
gregates by expressing complex patterns as composites of ordered sequences of
events. The FOLD operator of Cayuga, for example, iterates over an a priori un-
known sequence of events until a terminating predicate is satisfied, maintaining
aggregate statistics in the process; SASE’s skip until next (any) match opera-
tor maintains intermediate state in arrays in order to express Kleene closures,
an operator that has recently received considerable attention in complex event
detection [12, 13].

For non-deterministic finite automata, the complexity of a pattern lies in
determining what comes “next” in event processing [14]. But apart from folding
(or skipping) events, it is hard to specify patterns with branching in a Cayuga
or SASE automaton. Indeed, a stream has to be replicated and each branch
of the pattern must be represented as a different automaton. Finally, it is not
always possible to express nested patterns, e.g. a pattern that uses the local state
maintained by another.

The Tribeca query language used for network traffic streams [15] is provi-
sioned for demultiplexing and multiplexing packet streams. The demultiplexing
of streams, while similar to group by SQL operators, enables processing of sub-
streams beyond mere aggregates. The importance of multiplexing to network
analysts has also been stressed in Gigascope, in their discussion of the merge
operator.

Gigascope is a high-performance, network monitoring tool [16], and has been
designed to process packets on high-speed links, using a two-level query architec-
ture. High performance is achieved by pushing logic (low-level queries) closer to
the packet source - i.e. the network interface. Early data reduction is achieved by
protocol filtering, projection and aggregation. High-level queries are then used
to perform more complex tasks.

A wealth of packet stream processing algorithms focus on the frequency of
certain flow attributes, e.g. the throughput to (from) an IP address or a trans-
port port. The problem has been formally characterized as mining the frequent
items in data streams [17], and its applications to network monitoring include
finding the heaviest bandwidth consumers (heavy-hitters), or finding the heavi-
est connection initiators (super-spreaders) [18]. These algorithms are expressible
in the Homework system.

Modern traffic analysis tools also query the implicit structure of flows in a
traffic mix, in an attempt to match application labels to the underlying flow pat-
terns, and vice versa. Indeed, flow monitoring queries are not just mere counters
of some traffic volume metric, e.g. of the number of bytes or packets. Besides
identifying frequent items, patterns of temporary correlated flows are used for
classification or intrusion detection and are usually expressed as sequences of
events [19].
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3 The Topic-based Publish/Subscribe Cache

There are many situations in which detection of interesting events requires the
ability to receive raw events as they occur and the ability to query, as well as
modify, global state. In many deployment scenarios, these actions need to be
done in real-time. This paper describes a topic-based publish/subscribe cache to
facilitate such real-time processing.

A working system consists of a centralised, topic-based, publish/subscribe
cache and a varying number of applications that use the cache; the applications
and the cache interact through an RPC mechanism. The cache supports the
usual SQL commands for creating tables and inserting tuples into tables. The
selection operator has been augmented with appropriate time window extensions
to reflect the continuous nature of the events.

One can distinguish three different roles that applications can assume with
respect to the cache:

– populate tables with raw events via insert commands

– retrieve data from tables via select commands

– register interest to be notified when complex event patterns are detected

There are two types of tables, ephemeral tables (append-only streams for
which the primary key is the time of insertion) and persistent tables (time-
varying relations for which the primary key is the first defined field of the table
schema). Tuples inserted into ephemeral tables are stored in a circular memory
buffer,1 while tuples inserted into persistent tables are stored in the heap. For
persistent tables, an on duplicate key update modifier to the insert SQL com-
mand is used to update, rather than append, a row in the heap, while maintaining
the temporal order of events. Thus, when retrieving tuples from the Cache, the
default order for either table type is the time of insertion, unless overridden by
an order by modifier.

Apart from typical order by and group by operators, ad hoc select queries
over cached streams have been augmented with time interval expressions that
narrow the scope of results to the most recent ones, e.g. select * from <table>

since τ , with τ being the timestamp of the last retrieved tuple. Typically, ap-
plications submit such queries periodically.

Each table supported by the cache corresponds to a publish/subscribe topic
with the same name. An application can register an automaton (a user-defined
function) against the database; when a tuple is inserted into a table, that event
is published in the associated topic; all automata that have subscribed to that
topic will receive that event for processing. If, while processing an event, an
automaton determines that it has detected a complex event pattern of interest, it
may send information about the complex event to the application that registered
the automaton; additionally, during normal processing of events, an automaton
may publish a tuple into another event stream.

1 This is the reason that the component is called the Cache.
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The unification of the stream database view of events with a publish/sub-
scribe infrastructure is achieved as follows. Every stream database table, whether
ephemeral or persistent, also defines a publish/subscribe topic. Whenever a tu-
ple is inserted into a table, this tuple is delivered as an event to any automata
that have subscribed to that topic. A typical reaction application (e.g. a policy
management engine) registers one or more automata with the Cache.

An automaton is a compiled program that is bound to a separate thread
within the Cache. Its thread is awakened and executed whenever an event is
delivered into a topic of interest. As part of its processing, an automaton can
send derived events to its registering reaction application, as well as insert tuples
into other tables, whether ephemeral or persistent. This unity allows for complex
patterns to be presented as materialised views in the stream database and, vice
versa, materialised views to be used to derive complex patterns.

4 The automata programming language

4.1 Language design principles

Support for complex event matching, requiring consumption of raw publish/sub-
scribe events and access to static relations, dictates the following features of the
automaton programming language:

– ability to subscribe to one or more topic streams over which raw events are
conveyed

– ability to query persistent tables to access and/or modify static, global re-
lations

– ability to store local state across event deliveries to the automaton
– ability to send information about complex event occurrences to the register-

ing application
– ability to publish raw events into other publish/subscribe topics

Additionally, one requires a small set of basic data types, a small set of ag-
gregate data structuring constructs, and a small set of control constructs. The
basic data types of the language are described in Table 1. HAPL also defines
aggregate types (e.g. a map) and additional types required to manipulate these
aggregate types (e.g. an iterator over a map). These types are described in Ta-
ble 2. Every aggregate type has a constructor. Note that a sequence instance can
contain heterogeneous basic type instances, while each map or window aggregate
instance is bound to a particular type (basic or aggregate).

The language supports if-then-else and while constructs. It also supports
a typical set of operators for arithmetic, conditional expressions, and assign-
ment. The C-like syntax for the language was chosen to facilitate the coding of
commonly-used algorithms. See §6.4 for an example.

4.2 General Form for an automaton

The general form for an automaton is:
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Table 1. Description of basic data types

Type Description

int 64-bit integer
real Double-precision floating point
tstamp 64-bit unsigned integer (ns since the epoch)
bool True or false
string Variable-length UTF8 array

Table 2. Description of aggregate and supporting data types

Type Description

sequence Ordered set of heterogeneous data type instances
map Maps from an identifier to an instance of the bound type
window Collection of bound type instances that is constrained either

to a fixed number of items or a fixed time interval
identifier Key used in maps
iterator Used to iterate over all instances in a map (keys) or window

(data values)

– subscription(s)

– association(s)

– declaration(s)

– initialization clause

– behavior clause

Each automaton source starts with binding a local variable to each pub-
lish/subscribe topic to which it wishes to be subscribed. Every time an event is
delivered on any subscribed topic, the local variable refers to the last received
event over that topic. An automaton must always subscribe to at least one topic.
The cache provides a built-in topic, Timer, which delivers a tuple every second
consisting simply of a timestamp.2 All other topics must have been created by
create table calls made by applications (or during cache initialization from a
configuration file).

Associations are used to bind a local map variable to a persistent table. The
automaton can then access tuples in the associated persistent table through calls
to lookup() and insert() methods on that map variable.

Declarations enable the automaton to declare additional local variables needed
for automaton processing. The initialization clause is executed after successful
compilation of the automaton. It is usually used to initialise local variables, but
can perform any actions supported by the language.

The behavior clause is executed each time an event is delivered to any topic
to which the automaton is subscribed.

2 This is an example of punctuation-carrying heartbeat functionality [22].
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4.3 Example hybrid automaton

Households occupied by multiple, unrelated adults (e.g. students sharing a flat)
often opt for broadband plans with rapidly escalating charges if a per month
bandwidth allowance is exceeded. These households wish to control bandwidth
consumption as it nears the monthly allowance. Additionally, it is often the case
that a single member of the household is usually the cause of exceeding the
monthly allowance; therefore, there is a desire to track the usage of a subset of
the members of the household.

The required tables to support this functionality are shown in Fig. 3. The
Allowances table is populated with a monthly download byte-limit for monitored
IP addresses using a network management utility. The BWUsage table records ac-
cumulated usage; a network management utility is used to reset the accumulated
usage to 0 at an appropriate frequency.

create table Flows (protocol integer, srcip varchar(16), sport
integer, dstip varchar(16), dport integer, npkts integer,
nbytes integer)

create persistenttable Allowances (ipaddr varchar(16) primary
key, bytes integer)

create persistenttable BWUsage (ipaddr varchar(16) primary key,
bytes integer)

Fig. 3. Bandwidth usage tables

subscribe f to Flows;
associate a with Allowances;
associate b with BWUsage;
int n, limit;
identifier ip;
iterator it;
sequence s;
string st;
behavior {

ip = Identifier(f.daddr);
if (hasEntry(a, ip)) {

limit = seqElement(lookup(a, ip), 1);
if (hasEntry(b, ip))

n = seqElement(lookup(b, ip), 1);
else

n = 0;
n += f.nbytes;
s = Sequence(f.daddr, n);
if (n > limit)

send(s, limit, ’limit exceeded’);
insert(b, ip, s);

}
}

Fig. 4. Bandwidth usage consumption
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The automaton of Figure 4 tracks the bandwidth usage for each monitored
IP address, generating a notification to the registering application (in our case,
a policy-based management system) when a limit has been exceeded. The au-
tomaton subscribes to Flows events. It associates a and b with the persistent
tables Allowances and BWUsage, respectively. Upon receipt of each Flows event, it
does the following:

– generates an identifier from the destination address in the Flows event
– if no entry for this IP address in Allowances, stop processing
– lookup allowance for this IP address
– if entry for IP address in BWUsage, fetch accumulated usage, otherwise 0
– increment usage by number of bytes in this Flows tuple
– if limit exceeded, send event information to registering application
– update usage for this IP address

5 Automaton execution model

When an application registers an automaton against the Cache, it provides the
source code for the automaton along with data required for the cache to create
an RPC channel back to the registering application. The source code is compiled
into instructions for a stack machine; if a compilation error is detected, informa-
tion about the error is communicated back to the registering application, and
the RPC channel is closed.

Upon successful compilation, a new PThread is created to implement the
automaton, and an identifier is returned to the registering application; this iden-
tifier can be used to manage the automaton at a later time.

When the PThread is created, the byte code sequences resulting from the
compilation of the initialization and behavior clauses are bound to an instance
of the stack machine interpreter. The initialization sequence is executed, and the
thread then enters a continuous loop, awaiting an event on one of its subscribed
topics; the runtime guarantees that tuples are delivered to an automaton in
strict time-of-insertion order. Upon receipt of an event, the behavior sequence is
executed. If an automaton executes a send() in the behavior sequence, an RPC
containing the send() arguments is made to the registering application. If the
automaton executes a publish() in the behavior sequence, a tuple is inserted
into the table/topic specified in the publish() arguments, potentially triggering
other automata to execute.

The default PThread scheduling algorithm is used by the cache. Appropriate
conditional critical regions are used to guarantee safe execution. The language
runtime implements an aggressive garbage collection policy as soon as it knows
that heap allocated storage is no longer in use; the delete() procedure can be
invoked by code to advise when storage is no longer in use.

5.1 Optimizations enabled by the execution model

Many complex event processing systems based upon the stream database model
(streams and relational operators) require the creation of multiple temporary
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event streams to enable the operators to perform the requisite aggregation and
disaggregation operations demanded by the pattern matching logic. This leads
to a very large number of operators that must be scheduled, and a very large
number of additional tuples that need to be delivered to the tree of operators
that represent the query [7].

The imperative structure of the automaton language, together with the abil-
ity to declare and manipulate automaton-local state, enable the aggregation of
multiple operators into a single automaton, thus reducing the scheduling stress
on the event processing system. The following example, documented more fully
in [23], demonstrates this effect.

The DEBS 2012 Grand Challenge posed two queries with regards to moni-
toring for complex events from manufacturing equipment. Here we discuss the
first query, partially illustrated in Fig. 5. The query consisted of 15 operators
in total, only five of which are shown. The other ten are replications of those
illustrated.

Operators 1 and 4 compute a state transition by correlating attributes of the
initial stream S0; once a pattern is detected, an event is directed to the operator
7. Operator 7 looks for events S5 followed by events S8. This code is sequential,
since logically the latter operator awaits events in order. The sequential nature
of the automaton language allowed to put them together under one automaton
– i.e. one execution thread.

Operator 10 and 11 operate on the state, a 24-hour window of events gen-
erated by operator 7. The former computes a least squares fit over the stored
events; and the latter looks for an increase in the equipment delay and raises
an alarm. If these operators are treated separately, then exactly the same state
must be maintained twice. With our automata, this duplication can be avoided.

Finally, all code can be merged into a single automaton. And, finally simply
append the next two groups of operators one after the other since they are
independent.

0

0 0

0 0

5 8 58....

S8

24h

..

.. ..
S5 S58

CDataPoint Operator 10
Operator 11

Operator 1

Operator 4

Operator 7

Fig. 5. Exemplar operators from the DEBS 2012 Grand Chellange

6 Evaluation

Experiments are run on two AMD Athlon 64 dual core 2.7GHz processors with
4GB of RAM running Ubuntu Linux 2.6 and Window 7, respectively. The cache
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is implemented as a multi-threaded process. The main thread serially processes
RPC requests from other processes. Upon successful compilation of an automa-
ton, a new thread is created to animate that automaton. The remainder of this
section documents the performance of automata in this environment.

6.1 Cost of Built-in functions

It is important to characterize the costs of invoking built-in functions in the
language. The automaton template in Fig. 6 was used to measure the execution
costs to invoke different built-in functions.

subscribe t to Timer;
int i;
int limit;
tstamp start;
int diff;
# built-in specific declarations
initialization {

limit = 100000;
# built-in specific initialization
print(’===== Start of <built-in> test =====’);

}
behavior {

i = 0;
start = tstampNow();
while (i < limit) {

# invoke built-in
i += 1;

}
diff = tstampDiff(tstampNow(), start);
print(String(’<built-in>: ’, float(diff)/100000000.0));

}

Fig. 6. Built-in cost template automaton

The built-in specific declarations, initialization, and invocation are incorpo-
rated into each automaton as appropriate. The print() built-in is used to print
the string argument on the standard output; the number printed is the number
of microseconds required for each invocation of the built-in. Each automaton
was executed for 2 minutes on an unloaded machine. Figure 7 shows the min-
imum, 25th, 50th, 75th percentiles, and maximum of execution times recorded
for each built-in, with nothing indicating the per-iteration overhead due to the
while loop. [Note that limit for publish() was 50000, and for send() was 1000.]

Several things are apparent from this data:

– the stack machine interpreter acts like a processor with a ∼ 3µs instruction
cycle;

– identifier generation, which requires access to the heap and copying of strings,
takes a bit over 2 instruction cycles;

– publishing an event to another topic takes ∼3 instruction cycles; and
– sending an event to an external process takes ∼ 200µs.
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6.2 Performance at Scale

It is important to understand how the Cache performs as the number of automata
and also the frequency of tuple insertion scale up. To stress the system, we
vary the number of automata that subscribe to the Flows topic. Independently,
we vary the frequency of tuple insertion into the Flows table. An important
measure of the ability for the system to handle the increased scale is the delay
between when a tuple is inserted into the table/topic, and when each subscribed
automaton processes the event. This is measured using the automaton in Fig. 11.

subscribe f to Flows;
real min, max, ave, r;
int count, nsecs;
string id;
initialization {

min = 1000.;
max = 0.;
ave = 0.;
id = A ;
count = 0;

}
behavior {

count = count + 1;
nsecs = tstampDiff(tstampNow(), f.tstamp);
r = float(nsecs) / 1000000.;
ave = ave + (r - ave) / float(count);
if (r > max)

max = r;
if (r < min)

min = r;
if (count >= 1000) {

print(String(id, ’: ’, ave, , , min, ’, ’, max));
count = 0;
min = 1000.;
max = 0.;
ave = 0.;

}
}

Fig. 8. Performance at scale template automaton
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Fig. 10. Delay vs. event inter-arrival rate with 4 automata running

For each automaton, a different value is assigned to id; the subsequent log
is analysed for mean and standard deviation for the average delay observed
across all automata, as well as for minimum and maximum delays observed. The
independent parameters for the experimental runs are the number of automata
simultaneously subscribed and the cycle period of tuple insertion into Flows, ∆t.

Figure 9 displays the measured delay parameters for ∆t = 8ms. It is clear
that the average delay grows linearly as the number of automata scales from
1 to 8. In the deployments to date, the typical number of tuples inserted are
approximately 100 events/sec; ∆t = 8ms corresponds to an insertion rate of 125
tuples/second.

Figure 10 shows the measured delay parameters for 4 automata as ∆t scales
from 4ms to 64ms (insertion rates of 250 events/sec to 16 events/sec). The
average and variance of the delay remain essentially constant across this range
of packet insertion rates.
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The system scales well with number of automata and frequency of tuple inser-
tion. The linear growth in average and standard deviation of delay with number
of automata is consistent with scheduling of increasing numbers of PThreads.
The constancy of average and variance against insertion frequency indicates that
there is plenty of execution capacity in the Cache for the loads presented.

It is important to note that it is quite uncommon in our experience to have
several automata subscribed to high frequency topics like Flows.

6.3 Performance at stress

Another important measure of the capacity of the system is the maximal rate
at which it can absorb and generate RPCs. To measure this, we executed the
following automaton to measure 1-way and 2-way stress performance, with a
single application performing insert calls into a Test table as rapidly as possible.
Note that to measure 2-way stress, simply uncomment line 15 in Figure 11.

subscribe t to Timer;
subscribe s to Test;
int count;
initialization {

count = 0;
print(’===== Start of stress test =====’);

}
behavior {

if (currentTopic() == ’Timer’) {
if (count > 0)

print(String(’stress1way: ’, count));
count = 0;

} else {
count += 1;
send(s); # uncomment for 2-way test

}
}

Fig. 11. Performance at stress template automaton

The performance as the number of integer fields in the Test schema varies
from 1 to 16 is shown in Fig. 12.

Figure 13 shows the performance as the number of characters in a schema
consisting of a single varchar field varies from 1 to 10,000. Note that the RPC
system performs fragmentation/reassembly at 1024-byte boundaries, so the lin-
ear drop with buffer size is to be expected.

6.4 Finding frequent items

Figure 14 shows the “frequent” algorithm [17]. It stores k − 1 out of n items.
The final set contains at least those that have occurred n/k times. The execution
time is dominated by O(1) and O(k) operations. As k increases, the more the
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O(1) operations, the more expensive the O(k) ones. The mean (µ) decreases but
the standard deviation (σ) increases.

The input data are 264,745 out-going HTTP requests to 5,572 unique hosts,
as logged by the Homework router running in a small office environment at the
University of Glasgow. Figure 15 shows the Zipfian frequency distribution of
the data set, where hosts are ranked by their popularity. This is a well-known
characteristic of Web traffic.

Another approach is to introduce a built-in procedure if an implementation
in the automaton language is insufficiently performant. E.g.,

subscribe e to Urls;
behavior { frequent(T, Identifier(u.host), k); }

Figure 16 shows the coefficient of variation (σ/µ) for both the automaton
and built-in implementation of the algorithm.

6.5 Comparison with Cayuga

The examples from Cayuga are usually described using stock market queries.
Most of the examples, as well as the datasets provided with the distribution, are
related to complex analysis for stock investors. The largest dataset used contains
112,635 anonymized stock events.

We evaluate three Cayuga queries against the Cayuga engine. The Cayuga
engine best compiles in Microsoft’s Visual Studio, thus the experiments were
run on a Window platform. Figure 18 shows the results from comparing the ex-
ecution time of those queries with equivalent implementations in the automaton
programming language.

The Cayuga execution times are the elapsed time after all events have been
loaded into memory and until all events have been processed. The Cache was
never provisioned for post-hoc analysis of in-memory data: all events are pro-
cessed in real-time. For a fair comparison, we derive our timings by first append-
ing all events in a window, and then iterate over the window and execute the
queries.

The first query is an example of a basic operator. In Cayuga, the query
has the form SELECT * from Stocks PUBLISH T. The equivalent automaton is one
that subscribes to stream Stocks and publishes an event to another stream T.
The performance improvement against Cayuga is an order of magnitude. This
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subscribe e to Urls;
map T;
iterator i;
identifier id;
int count;
int k;
initialization {

k = k ;
T = Map(int);

}
behavior {

id = Identifier(e.host);
if (hasEntry(T, id)) {

count = lookup(T, id);
count += 1;
insert(T, id, count);

} else if (mapSize(T) < (k-1))
insert(T, id, 1);

else {
i = Iterator(T);
while(hasNext(i)) {

id = next(i);
count = lookup(T, id);
count -= 1;
if (count == 0)

remove(T, id);
else

insert(T, id, count);
}

}
}

Fig. 14. The “frequent” algorithm [17]
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strengthens the argument of the efficacy of the automaton execution model and
the efficient unification of publish/subscribe with the data stream management
code.

The second query is an example of using multiple states. The query detects
price movements over time. In particular, it asks for notifications whenever there
is double-top formation in the price chart of any stock – this is a well-known
pattern amongst analysts, otherwise known as M -shaped pattern. The automa-
ton detects the pattern twice as fast as Cayuga. This pattern is best illustrated
with an example. Fig. 17 shows one of the M -shaped patterns detected in the
data set. Due to space limitations, the Cayuga query is omitted. It is available
at www.cs.cornell.edu/bigreddata/cayuga/.

Our implementation maintains states A-F in a map of stocks; each entry
represents a small state machine. Once all states A-F are true, then the pattern
is detected. Depending on the current stock price, the algorithm backtracks to
previous states or proceeds to the next (ascending or descending) accordingly.
Note here that our solution is algorithmic (if-then-else). This is another example
of the ability to implement multiples state machines under a single execution
thread, which contributes to the substantial performance enhancement.

The final query is a prime example of the use of the FOLD operator; it is used
to maintain aggregates and windows under time- or attribute-based conditions.
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The desired behaviour is to be able to detect continuous runs of increasing
prices for each stock, and to be able to display the sequence of events that con-
stituted each run. This has been done simply and effectively using two automata
that are substantially faster (×50) than the Cayuga equivalent.
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Fig. 18. Benchmarking against Cayuga

7 The impact on complex event processing

We have proposed an algorithmic, imperative approach to complex event pro-
cessing.

The first impact is Turing completeness, something that was proposed from
a theoretical basis on [3]. Some event languages have a solid background in event
calculus and result in one line expressions that may be compact implementations
but are not apt to user optimizations – apart from physical query plans. For
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example, there is a large body of complex event language research on Kleene
closures [9]. Although not explicitly documented here, we have implemented
SASE’s kleene closure operator (e.g. based on partition contiguity) with a map
of windows.

Our experiences thus far are that the imperative programming style of GAPL
allows it to be used in many domains: home network management [4], industrial
applications [23], and, given the latest endeavours comparing to Cayuga, stocks.

Apart from expressiveness, the imperative programming model is substan-
tially faster. It may be viewed as an assembly language to which higher-level
complex event languages can subsequently compile.

8 Conclusions

It is clear that the automaton language, as integrated into the cache, provides a
very high-performance complex event processing capability. It can be criticized
for its imperative, C-like structure, in terms of usability by individuals wanting
to deploy their own automata. We have started to investigate compilation of
stream expressions for complex event patterns, such as Cayuga’s, into equivalent
automata. An alternative approach is to compile stream expressions directly into
instructions for the stack machine that underlies the cache.

In comparing with Cayuga, we have determined that we need to be able to
create streams on the fly. This will enable exploration of the dynamic demul-
tiplexing of streams, as lately discussed in [24]. We continue our comparative
endeavours with the Linear Road Benchmark [25].
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