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Abstract

We demonstrate the imaging capabilities of energy-filtered transmission electron microscopy at

high energy resolution in the low energy-loss region, reporting the first direct image of a surface

plasmon of an elongated gold nanoparticle at energies around 1 eV. Using complimentary model

calculations performed within the boundary element method approach we can assign the observed

results to the plasmon eigenmodes of the metallic nanoparticle.
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Plasmonics is an emerging field with numerous applications [1, 2], ranging from optical

data processing [3, 4] over negative-refraction materials [5, 6] to bio-sensors [7, 8]. Surface

plasmons, the workhorse of plasmonics, allow to bridge between the micro- and nanome-

ter length scales of conventional optics and nano-devices. This is achieved by binding or

converting light to coherent electron charge oscillations, confined to the surface of metallic

nanostructures. When optical emitters, such as molecules or quantum dots, are placed in

the vicinity of metallic nanoparticles, they couple strongly to the evanescent fields of the

surface plasmons, and the light-matter coupling becomes significantly enhanced. This is

exploited in surface enhanced Raman scattering [9] or surface enhanced fluorescence [10], as

well as in single-plasmon generation [11].

The electromagnetic enhancement is particularly strong at the so-called “hot spots”,

with typical sizes of a few nanometers, which are usually located in the gaps between two

nanoparticles or at the sharp edges of single particles. While enhancement factors of sev-

eral orders of magnitude are predicted [12], the analysis of the experimental data is often

cumbersome and controversial due to the limited spatial resolution provided by optical far-

and nearfield techniques, as well as due to the uncertainties regarding the precise loca-

tion of the optical emitters. An alternative experimental technique, which allows to bypass

these difficulties, is electron energy-loss spectroscopy (EELS) in combination with scanning

transmission electron microscopy (STEM) [13]. Here, a high-energy electron beam, with

a transversal extension on the sub-nanometer scale, passes in the vicinity or through the

nanoparticle, and some electrons lose energy through plasmon excitations, which are subse-

quently monitored. By raster scanning the beam over the metallic nanoparticle, one obtains

information about the photonic local density of states of the metallic nanoparticles [13–17].

The spatial resolution of the maps is limited to the nanometer range by delocalization of

the inelastic scattering [18, 19].

The drawbacks of the EELS technique have so far been the energy cutoff in the low-

energy regime and the limited spatial resolution in large-area mappings. On the one hand,

the so-called zero-loss peak (ZLP) of the electron beam usually masks the low-energy part of

the spectrum. This hinders the direct observation of surface plasmons in the red and infra-

red regime, which is particularly appealing for (bio)sensors or applications at the telecom

wavelengths. On the other hand, as STEM EELS data are sequentially acquired point-by-

point, the sampling of the spatial dimensions is limited by keeping the total acquisition time
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low, which leads to usually rather coarse maps.

In this paper we show that energy-filtered transmission electron microscopy (EFTEM)

as an alternative acquisition technique enables us to directly image surface plasmons at low

energies. As a parallel imaging technique, which gathers images using scattered electrons

of a specific energy-loss range only, it achieves high spatial sampling easily and fast, while

providing the same information content as STEM EELS [20, 21]. The energy resolution of

the EFTEM technique is typically in the range of a few eV, but can be pushed to the sub-

eV range if a small energy-filtering slit width and appropriate data correction schemes are

used [22]. This enabled us to directly monitor surface plasmons at energies around or below

1 eV without employing any deconvolution procedure. We achieved image sizes of 512 × 512

pixels for exposure times on the minute scale.

Experiment.—In our experiments we used a Wien-filter monochromated FEI Tecnai F20

microscope with a High Resolution Gatan Imaging Filter and an UltraScan CCD camera [23].

The investigated specimen was a rod-shaped gold nanoparticle synthesized by a modification

of the conventional citrate reduction of gold salt in water [24]. A holey carbon film was used

as the sample support grid. Figure 1(a) displays the particle in a TEM bright field image.

With the monochromated beam, the condenser lens was adjusted such that a homogeneous

illumination of the particle could be achieved. An EFTEM image series was acquired via our

customized acquisition script, which adapts exposure times and multiple frame read outs for

each energy step to the encountered intensity situation [25]. We used an energy selecting

slit width of 0.3 eV, and recorded the images in the energy range from 1.0 to 4.5 eV in

0.1 eV steps. The spatial sampling of the images was 512 × 512 pixels for a field-of-view

of 456 × 456 nm, and the total acquisition time was 17 minutes. The raw data were then

processed to correct for spatial drift, energy drift, and non-isochromaticity [22].

We first extracted, from single pixels of the EFTEM image series, energy-loss spectra

at the three positions indicated in Fig. 1(a). Fig. 2(a) shows the corresponding spectra.

For comparison, we also measured three EELS point spectra at approximately the same

positions, which are shown in panel (b). All data are shown without background subtrac-

tion. In the spectra we observe three distinct peaks in the energy range below 3 eV, which

we tentatively ascribe to the surface plasmon eigenmodes of the gold nanorod. This inter-

pretation is supported by the EFTEM images of Fig. 1(b–d), taken at the energies of the

peak maxima. The mode at 0.97 eV has its intensity maxima at the top and bottom end
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FIG. 1: (Color online) (a) TEM bright field image of rod-shaped gold nanoparticle, with approxi-

mately 400 nm length and 75 nm diameter. The markers indicate pixel positions at which EELS

spectra in Fig. 2 have been extracted. (b–d) EFTEM images at given energy-loss values. Image

intensities have been normalized with respect to the maximum intensity of panel (b). We use

pseudocolor for better visibility. The EFTEM maps show the electromagnetic eigenmodes of the

gold nanorod.

of the rod, reminiscent of a dipolar excitation, while the map depicted in panel (c) shows

an additional peak in the central region of the nanorod, similar to the first excited mode

of a linear antenna. Finally, the mode at 2.27 eV, panel (d), vaguely shows two maxima

at approximately one and two thirds of the long nanorod axis. In all cases we observe a
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FIG. 2: (Color online) (a) Single-pixel extracted EELS spectra from EFTEM data at positions

indicated in Fig. 1(a). (b) STEM EELS spectra acquired at the same sample positions. The

arrows in the lower parts of the panels indicate the energy resolution of the data.

strongly reduced intensity at the sides of the carbon support, in comparison to the vacuum

side, which we attribute to absorption losses of the electron beam in the carbon.

Theory.—To unambiguously interpret our experimental results, we additionally per-

formed simulations using the boundary element method (BEM) approach [26, 27]. In our

simulations we assume that a beam of 200 keV electrons passes in the vicinity of the metal-

lic nanoparticle, as depicted in Fig. 3(a). For simplicity no penetrating trajectories were

considered [13]. We model the gold nanoparticle as a rod with 400 nm length and 75 nm

diameter, in accordance to the particle shape depicted in Fig. 1(a). The dielectric function

of gold was extracted from optical data [28] and the refractive index of the surrounding
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FIG. 3: (Color online) Results of BEM simulation. (a) Triangulated surface of rod-shaped nanopar-

ticle and EFTEM maps as computed according to the prescription of Ref. [26]. The maps at the

energies of 1.08 eV, 1.85 eV, and 2.29 eV have been displayed in pseudocolor scaled to match the

data range of the 1.08 eV map. The loss rates for the 2.29 eV map have been multiplied by a factor

of 5 for better visibility. The lines indicate the direction of the electron beam. (b) Energy-loss

probability at the positions indicated in panel (a).

medium was set to one. The external excitation due to the electron beam is described by

the Liènard-Wiechert potentials [29]. We compute the dielectric response of the nanoparticle

within the BEM framework by means of auxiliary surface charges and currents [26], which

allow us to compute for a given frequency ω the induced electric field Eind[re(t), ω] at the
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positions re(t) of the electron beam, and to express the energy loss probabilities according

to [26]

Γ(ω) =
1

πω

∫
Re

{
e−iωtv · Eind[re(t), ω]

}
dt . (1)

In our computational approach, we discretize the surface of the nanoparticle by a set of

triangles, as shown in Fig. 3(a), and match the electromagnetic potentials at the triangle

centers [27, 30]. For spherical nanoparticles we compared the loss probability Γ(ω) with the

analytic results of Mie theory [31], and found excellent agreement between the numerical

and analytic results.

Results of our BEM simulation are shown in Fig. 3. Plasmon peak maxima are found at

the energy positions of 1.08 eV, 1.85 eV, and approximately 2.29 eV. The spatial intensity

distribution of the plasmonic modes fits the experimental findings very well, giving evidence

that the detected peaks in the EELS spectrum can be interpreted as the resonance modes

of the plasmon oscillations of the gold nanoparticle. We attribute the differences between

the energetic positions of the peak maxima in theory and experiment to our neglect of the

holey carbon film in the simulations, which is expected to red-shift the peak maxima and to

introduce an anisotropy in the simulated EFTEM maps. As regarding the peak at 2.29 eV,

we find that it is strongly broadened. This is attributed to interband scatterings in gold,

that take place above a threshold of approximately 2 eV. We also found that the EFTEM

map of the 2.29 eV peak is smeared out when we compute the loss probabilities not at a

single energy, but integrate over an energy window of 0.4 eV to simulate the effect of the

limited energy resolution in the experiments.

Discussion.—The energy resolutions of both EFTEM and EELS is governed by the width

of the ZLP. Surface plasmons of silver nanoparticles have been mapped by EELS in an energy

regime above 1.70 eV, using cold field emission guns together with a deconvolution procedure

applied to the raw data [13]. Surface plasmons of gold particles, which lie closer to the ZLP,

are more difficult to observe and may need the resolution improvements of a monochromated

system [32]. A monochromated beam has a truly symmetric energy distribution and no

pronounced ZLP tails towards the low-loss regime, giving profound advantages over cold

field emission guns in this energy range [33]. An analysis of the full width at half maximum

of the ZLP, extracted from the data in the vacuum area, reveals for our setup an EFTEM

energy resolution of 0.43 eV, to be compared with the EELS resolution of 0.17 eV. This

higher spectral resolution of EELS is also apparent from Fig. 2, although in both cases
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the different plasmonic eigenmodes, whose spectral widths are usually of the same order of

magnitude, can be easily discriminated.

The advantage of EFTEM lies in its high spatial resolution over large field-of-views. It

is important to realize that any attempt to obtain mapped EELS images with comparable

spatial sampling is not simply more cumbersome or time-consuming, but is probably doomed

to failure for the following reason. A difficulty for extreme low-loss mapping is posed by the

strong intensity difference between the ZLP and the adjacent low-loss region, which chal-

lenges the dynamic range of the detector. The situation is even worse for a monochromated

source, as the ZLP maximum becomes stronger with decreasing peak width. While it is

possible to choose a setup which truncates the most intense parts of the ZLP by shifting

the spectrum just across the edge of the detector, this technique relies on the stability of

the system with respect to energy offsets over the time of acquisition. Considering the pixel

dwell time of about 0.6 sec, which includes both the exposure time of 0.1 sec and the data

readout of the detector, a spatial map of 512 × 512 data points would have taken close to

36 hours, during which energy drift must not have exceeded 0.5 eV. Such long time stability

can hardly be achieved in any modern system. In contrast to the scanning beam approach,

within EFTEM the energy dimension is sampled sequentially and the dynamic range prob-

lem close to the ZLP can be overcome by especially adapted acquisition routines [25]. A

second advantage of EFTEM is its ability to rapidly image large areas at lower magnification,

without tediously adjusting the electron beam to coarse sampling conditions. For instance,

imaging the spatial distribution of the 1 eV peak alone would have required only 1 minute,

thus demonstrating the unique capability of mapping large field-of-views with spatial resolu-

tion on the nanometer scale. Furthermore, in a scanned beam approach spatial drift during

acquisition can lead to map distortions, which can not be corrected or even unambiguously

identified from the data alone, whereas spatial consistence of EFTEM images is immediately

evident.

In conclusion, we have shown that EFTEM imaging can be used to directly and efficiently

visualize the electromagnetic eigenmodes of surface plasmons in metallic nanoparticles. The

technique surpasses the spatial resolution of optical measurements by more than one or-

der of magnitude and still allows for large field-of-views to be investigated within several

minutes. Therefore, detailed studies of assembled particles or structured devices become

available, bridging the gap between highly resolved local measurements, such as STEM
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EELS, and optical microscopy techniques, which average over larger areas and smear out

inhomogeneities on a nanometer scale. The technique can also be applied for fast screening

of many particles with slightly different resonance frequencies, or to localize “hot spots” of

strongest resonance in a device, prior to detailed local analysis. It could also be advanta-

geous for beam sensitive samples, in those cases where high dose rates rather than the dose

itself harms the specimen. Here a focused beam may alter the structure locally during the

measurement, whereas rapid parallel illumination of the sample allows for snap shots of an

undamaged specimen. It should be emphasized that a beam monochromator is paramount

for resolving plasmon energies around and below 1 eV, which constitutes an important en-

ergy range for Au nanoparticles. We believe that EFTEM will not supersede the scanning

EELS approach as a high-spatial-resolution and high-energy-resolution technique in general,

but will amend its capabilities with respect to the spatial domain.
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