Fabrication and tuning of nanoscale metallic ring and split-ring arrays

Sheridan, A.K., Clark, A.W. , Glidle, A., Cooper, J.M. and Cumming, D.R.S. (2007) Fabrication and tuning of nanoscale metallic ring and split-ring arrays. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 25(6), p. 2628. (doi:10.1116/1.2794328)

Sheridan, A.K., Clark, A.W. , Glidle, A., Cooper, J.M. and Cumming, D.R.S. (2007) Fabrication and tuning of nanoscale metallic ring and split-ring arrays. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 25(6), p. 2628. (doi:10.1116/1.2794328)

Full text not currently available from Enlighten.

Abstract

Metallic structures with dimensions smaller than the wavelength of light demonstrate optical properties which depend strongly on the nanoparticle size, shape, and interparticle spacing. The optical properties are caused by the excitation of localized surface plasmon resonances that lead to strong enhancement and confinement of the optical field and can be exploited for many applications including surface-enhanced Raman spectroscopy, near-field scanning optical microscopy, and negative refractive index materials. In order to fully exploit the properties of these structures, both a highly reproducible and flexible fabrication technique and an in-depth understanding of the optical properties are needed. In this article, the authors demonstrate the fabrication of arrays of gold rings and split rings on glass using electron beam lithography. Electron beam lithography allows not only precise control of the size, shape, and spacing of the arrays but also the scope to design novel shapes at will. We characterize these arrays using polarization dependent spectroscopy. The structures can support multiple plasmon resonances, demonstrating that excellent uniformity across the array is achieved. These resonances are further characterized using a finite difference time domain method to model the electric field distribution around the ring structures.

Item Type:Articles
Additional Information:51st International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Cumming, Professor David and Glidle, Dr Andrew and Cooper, Professor Jonathan and Clark, Dr Alasdair
Authors: Sheridan, A.K., Clark, A.W., Glidle, A., Cooper, J.M., and Cumming, D.R.S.
College/School:College of Science and Engineering > School of Engineering > Biomedical Engineering
Journal Name:Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures
ISSN:1071-1023
ISSN (Online):1520-8567
Published Online:11 December 2007

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
387921Extreme sensitivity by engineering plasmon resonance sensorsDavid CummingEngineering & Physical Sciences Research Council (EPSRC)EP/C509927/1Electronic and Nanoscale Engineering