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A Nonlinear Approach to Modeling of Electrically
Stimulated Skeletal Muscle

Henrik Gollee*, David J. Murray-Smith, and Jonathan C. Jarvis

Abstract—This paper is concerned with the development and on a macroscopic or on a microscopic level. Such models have
analysis of a nonlinear approach to modeling of the contraction the advantage that their parameters can often be directly related
of electrically stimulated skeletal muscle. The model structure is 14 characteristics of the muscle. On the other hand. such models

based on a network of locally valid linear models which are blended . . .
together by a scheduler. Data are from experiments with rabbit tib- tend to be complex and thus computationally expensive. Their

ialis anterior muscles in which the muscles contracted isometrically Parameters are often difficult to identify, and their structure is
while being stimulated by supramaximal impulses with randomly rarely controller orientated.
varying inter-pulse intervals. The model accounts for nonlinear ~ Another common modeling approach is to use empirical
effects due to variations of the stimulation frequency, such as the model strategies which aim to describe the input-output (1/O)
catch-like” effect. It is shown that this modeling technique is .o 5 teristics of muscle (often limited to conditions common
suitable for modeling the contraction of muscles with very different . s
characteristics, such as muscle with a majority of fast motor units |r} FES applications) a”‘?' .are purely based on I/O dat‘."" The
and muscle with mainly slow motor units. The approach is also Simplest form of an empirical model of muscle contraction is
suitable as a basis for the design of muscle stimulation controllers.  a linear second-order dynamic model which has been found
Index Terms—Functional electrical stimulation, local model net- adequate t_o descrlbg isometric contraction [30], _[43] and
work, muscle modeling, nonlinear system identification. nonisometric contraction [2], [3] under constant stimulation
conditions (e.g., constant pulse energy and frequency).
Nonlinear effects of varying motor-unit recruitment for non-
. INTRODUCTION constant stimulation are often accounted for by adding a static
OR muscle which has lost nervous control, artificial eledecruitment curve which results in a Hammerstein model [4],
trical stimulation can be used as a technique aimed at pté0], [15]. A model with this structure can be transformed easily
viding muscular contraction and producing a functionally usefito a form suitable for linear controller design by shaping the
movement [28]. This is generally referred to as functional elegontrol signal by the inverse static recruitment curve [14], [20].
trical stimulation (FES) and is used in different application are&zenerally, however, the process of motor unit recruitment is not
such as the rehabilitation of paralyzed patients in whom n&tatic as it includes, for example, hysteresis effects and the as-
ural neural control of muscular contraction has been lost duesémption that the dynamics of the muscle can be described by a
a spinal cord injury [20], [35] and in cardiac assistance wheli@ear time-invariant transfer function does not hold if the level
skeletal muscle can be used to support a failing heart [38]. F¥ractivation varies over a wide range [21].
both these FES app”cationS, a model of the muscle is essenMost empirical model structures account Only for effects due
tial to develop algorithms for its controlled stimulation. Such & varying stimulation levels but are unable to describe changes
model needs to describe the nonlinearities within the behavRfithe muscle characteristics with varying stimulation frequency,
of the muscle that are relevant to the intended application. TBe varying inter-pulse interval (IPI). Controller-orientated
model parameters need to be easily adjustable, and capabl&eflels which describe nonlinear properties related to variations
derivation from the results of standard experiments which @b the stimulation frequency should be very useful for FES, as
not damage the muscle. The structure of the model needs tdte important to employ such nonlinear characteristics to stim-
controller-orientated, that is, controller design based on suchlate the muscle in a way which is closer to natural stimulation
model should be possible. The designed controller must notBiterns, and this can help to reduce muscle fatigue [27].
computationally expensive if it is to be implemented in the form Itis well known that muscle characteristics vary significantly
of an implantable device. with the stimulation frequency [9]. The static force (that is, the
An extensive review of various muscle mode"ng approachégstained force of a tetanic contraction) increasesina sigmoidal
can be found in [43]. Many muscle models are based on an an#@y for steadily increasing frequency of stimulation (the force-

ysis of the physiological principle of muscle contraction, eithdrequency curve). Generally, the force-frequency relationship is
not static; the force developed by the muscle depends on the his-

tory of the stimulation frequency in a dynamic way [5], [13]. A
Manuscript received March 17, 2000; revised December 18, 28€@risk nonlinear summation of contraction for stimulation pulses with
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Bobet et al. [7] showed that a linear time-varying model < The IPIs were varied randomly between 1 and 70 ms.
can successfully describe muscle contraction under conditionse The maximum duration of each pulse train was 300 ms.
where pulse energy and/or stimulation frequency vary. In their ~ Together with periods of rest of 30 s between the pulse
model structure, the muscle force is approximated by a critically  trains, this ensured that the influence of fatigue on the
damped, linear second-order system which is time-invariant recorded data was minimized.
between stimulation pulses. The model parameters are adapted A constant-frequency burst of impulses (25-ms IPI, which
separately for each IPI. This results in an overall model with  corresponds to a stimulation frequency of 40 Hz) was de-
as many linear models as IPIs. The fact that this approach can livered every 5 min to check that the preparation did not
approximate isometric muscle contraction under various stimu-  show progressive deterioration during the experiment.
lation conditions shows that a second-order time-variant linear « The data were recorded with a sampling interval pf=
model is an appropriate model structure. The approach was 1 ms.

developed further to a linear time-varying Wiener-type model The contractile force of the muscle was measured and recorded
in which a static nonlinearity is placed between two first-ordgjhile the muscle contracted isometrically, i.e., the muscle length
transfer functions [6]. The time-constant of the second trans{ggs held constant. In our experimental setup, the muscle pulls a
function varies with the force. Good matches were found wifyer which is attached to a servomotor. The muscle length was
experimental data for stimulation with varying IPI. ~ controlled and the force measured by means of this servomotor
Donaldsonet al. [11] obtained encouraging results using ghich was designed for this purpose (Model 3108, Cambridge
radial basis function network to model isometric contraction ‘Pﬁstruments, Watertown Massachusetts). This instrument is
muscle which is stimulated with supramaximal pulse trains @fyapje of setting and holding length with an error of less than
varying frequency. This approach was developed further usifg); mm against forces of up to 50 N. The linearity of the force

local descriptions of muscle characteristics by second-orqgp,q\ rement is within 0.2% of the force range, and the resolu-
linear models which are valid for certain operating regions [17t]_on of the force signal is 0.01 N. In practice, the resolution of

These local models are blended together using a scheduler w experimental data was determined by the 12-bit analog-to-

_selects the model closest to the cgrrent operating point, iio| converter that we used so that the working resolution was
interpolates between models. As this overall blended structyy roximately 0.02 N for force, and 0.02 mm for length

represents a time-varying linear model, the approach is close he experi
. perimental data were preprocessed such that the offset
related to to the W(.)rk presented by Bobil.in [6] and [7.]' The ip the measured force was removed, and the input and output data
model developed in [17] was, however, found to be suitable on Y, : . .
5 tswere normalizedin such away thatthey layinthe rangé

for muscle with a majority of fast motor units. Thus, the approac Two tvpes of muscle were used in the experiments. a control
was extended and generalized, and the model presented in rtrr11is yp P '

paper can be used with a wider range of muscles. l_Jrsthe an? 6I‘ chronllca_illy st|mu|<:]1ted mdusclbes_t tibiali teri
This paper is structured as follows. In Section Il, the experi- € control muscle IS an unchanged rabbit tbialis anterior

mental setup for the data collection is described. Data for co"r‘{hose characteristics are determined by a majority of fast motor

traction with constant muscle length were collected from twilits- We will, therefore, refer to it as tifastmuscle. A total
muscles with very different characteristics. The empirical mo§! 60 data sets, containing the input pulses and the contractile
eling approach which is based on a decomposition of the opff£Cce were recorded. The duration of each set is 590 ms.
ating space into smaller sub-regions is introduced in Section |11, T Nechronically stimulatednuscle is a rabbit tibialis anterior
Results which compare the model output with the experiment¥ich was stimulated at 10 Hz for four weeks. As outlined in
data are presented in Section IV. These results are discussedafll SUCh chronic stimulation reduces the contractile speed of

the model properties are analyzed in Section V. Conclusions 478 muscle. The muscle characteristics are, therefore, dominated
presented in the final section. by slow motor units, and we will refer to this muscle as shev

muscle. Atotal of 84 data sets, containing the input pulses and the
contractile force wasrecorded. The duration of each setis 600 ms.
Il. METHODS
The data used in this paper were obtained from experiments
with rabbittibialis anterior muscles. The muscles were stimu-
lated indirectly by irregular supramaximal pulse trains using flap The basicidea ofthe modeling approach employed in this work
electrodes placed around both common peroneal nerves. T divide a complex nonlinear modeling task into smaller and
termsupramaximalefersto the factthatthe amplitude and lengtimpler sub-tasks. Each sub-task can then be handled locally by
of the stimulation pulses were chosen such that all motoneurensimpler model. A scheduler is used to decide how relevant the
of the muscle were recruited. The activation of the muscles Wadels are for the current operating condition and weights them
varied by changes of the IPIs of the stimulation pulses. accordingly. The overall model is the sum of all weighted local
The experimental protocol is described in detail in [29]. Theodels. This approach is referred to as a local model network
following conditions are particularly relevant for our studies and MN) [24]. The relationship between LMNs and other ap-
apply to all experiments. proaches, such asthose based on fuzzy logic, is reviewed in[25].

» The muscles were stimulated using electrical impulsesThe local models used to form a LMN can generally be of any
of 200us duration and an amplitude three times th&rm, e.g., linear or nonlinear, in I/O or state-space form, empir-
threshold for muscle stimulation, which ensures supré&al or based on physical analysis. It is often straightforward to
maximal stimulation. incorporatea priori knowledge when selecting the structure of

I1l. M ODELLING
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Fig. 1. LMN in state-space representation.
the local models. We will restrict ourselves to lotiakar de- gi(z(t)) = ¢l z(t) + dY. (3b)

scriptions, employing the concept of local linearization.
To illustrate the modeling concept, we consider the foIIowinﬁ
general time-invariant nonlinear system in state space form

ithi = 1,..., M. The overall system can then be approxi-
ated as

M
£(t) = f(&(t),u(t - Td)) (1a) &(t) _ Zm(?(t)) [A7£(t) +Q7;U(t _ Td) +C_lf] (4a)
y(t) = g(z(t)). (1b) =i
Here, f() and g¢() are nonlinear, continuous differen- ?J(t)zzpi(ff)(t)) [Fa(t) +d?] . (4b)
tiable functions. For simplicity, we restrict ourselves to =1 o

single-input-single-output system, i.e., the inputand the . equivalent discrete-time form which is suitable for imple-

outputy are scalar. The dimensionality of the state vector S . . .

. : : . mentation in real-time computing hardware, can be obtained by
defines the dynamic order of the system as a function of t'r?r%msformin the system (4) intboperator form [31]
t, andi(t) denotes the derivative of the state with respect to 9 y P

_zk+1) — (k)

time, dz/dt. The scalafl; € R is a time-delay, and the initial

state at = 0 is z,. bz(k) T,
In the state-space description (1), there are two nonlinear M B R
functions, f andg, which can each be approximated by means = Z pi(p(k)) [Ai z(k) + bu(k — kq) + dﬂ (5a)
of a local function decomposition. The system can then be i=1
rewritten as a weighted sum &f local models M .
y(k) = D" pi(@(k) [ (k) + ] - (b)

i(t) = Z pi( () fi(@(t), u(t — Ta)) (2a)

Here, T, denotes the sampling period, = 1,2,3,... is the
M sample index, and, is the input delay defined ds; = 7,;/7.
y(t) = Z pi(p(t)) gix(t)) (2b) It should be noted that (4) and (5) represent linear parameter-
i=1 varying (LPV) systems in which the parameters depend on the
which is a LMN representation of the system (1). Hefg) scheduling vectog. For (4),_we can substitute the interpolated
andg; () are local approximations fof() andg(), respectively, Model parameters as functions¢f
for the operating conditions where the corresponding validity M M
functionp; is active. The set of validity functior{soi}ﬁ‘_il forms A() = Z pi(P)Ai, b(g) = Z pi(P)b;
the scheduler, wherg is the scheduling vector. This structure i1 py
is shown in Fig. 1. M
Employing the concept of local linearization for different op- d*(¢) = Z pi(P)dy
erating conditions, we choose to work with standard linear local i=1
state-space representations [26]. This results in

M M
C = i G, dy = i df 6
filz(t),u(t — Ty)) = Aiz(t) + bu(t —Ty) + 47  (3) 49 ; PP @ zz:; g ©
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Fig. 2. Training and test mses for LMN structures with one to eight units, simulated with an infinite prediction horizon. (a) Fast muscle. (b) $$ow musc

The system can then be rewritten as an LPV system forward: the damping factor is set{o= 1 to obtain a critically
N " damped response. The facfois selected such that the filtered
i(t) = A(@(H)z(t) + b(A(1) ult — Tu) + d°(¢(1)) (78) variable lies approximately within the input range of the validity
y(t) = (¢()z(t) + d¥((t)). (7b)  functions, i.e., between zero and one. The natural frequepcy
Equations (5) can be rewritten in a similar way. was selected empirically. We found that its exact value is .not
itical as the model structure can compensate for a nonoptimal

The model properties of the system (7) can be analyzed % ; .
cally using methods which are based on standard linear sys? wlce_. -;BUZ’iorzglir %Eerlments we chose to work its

s3] TS roesamenslehengeloct ML e ot mosts i (4 o (5
prop 9 ystem. JAi b, d7 ¢, d 1, can be optimized with an infinite

LOFaI mode_ls O.f seco_nd-prgier were found_to be opt_|mial f rediction horizon using the Levenberg—Marquardt algorithm
the given apphcapon whichiis in agreement with other finding 6]. The number of local models is determined by successively
e.g\;/.\} [4::]]’ mt' A t|mke-qtehlay O{Fdf: S ?styvalas delt.ectedl.o fort increasing the network size until an optimum with respect to

i d?tc foset_owor ‘V\f\'f f”lsi OTil‘.'a ratic dsg TheS[I ] l_or hﬁ"‘ne mean-squared-error (mse) on test data is reached. Note that
valdity iunc !o_ns{p, i=1 N (4). This ensured both a oca IzeOIthis definition of the optimal size does not necessarily find
region of act|V|ty_ for ea_ch local model and a smooth 'nterp()lfl'ﬁe simplest acceptable structure. This could be achieved by
tion between neighboring models. extending the mse criterion with a penalty term for the number

The scheduling vectorp should represent the nonline‘fj‘rof‘]:?arameters, such as in Akaike’s Information Criterion [1].
changes of the system characteristics. It can generally be th

input or the output of the system, or a combination of both. In
[17] and [18], the output of the system was used to select which
local model is active. In the experiments presented here, thisTh® LMN approach was used to obtain models for the fast
approach did not generally yield satisfying modeling resultdnd the slow muscle introduced in Se.c.t|on. 1. For each muscle,
as it showed good results only with the fast muscle, but faile¥ data sets were used for the identification of the model pa-
for the slow muscle. rameters. The models were then validated using the remaining
Another straightforward choice for the scheduling variabiest data sets (30 sets for the fast muscle and 54 sets for the
is to use a measurement of the instantaneous stimulation f2W muscle). Starting with a single local model (i.e., with a
guency. As the current stimulation frequency cannot be detdipear model), the number of local models in the structure was
mined for a sequence of pulses with randomly varying IPI, it gleadily mcreaseq. Whergas the error on the _tra!nlng data de-
approximated by filtering the input pulses using a second-ordggases monotonically with the number of units in the LMN,

critically damped low-pass system with the transfer function the error on the test data sets starts to increase after the optimal
I model size has been reached which indicates over-fitting of the

- - (8) data[19]. Thisis showninFig. 2. The structure with the smallest
52 4 26wns + wj, test error is then selected as the optimal one for each muscle.
This approach which uses the system input to select which locallest results for some typical data sets which were not used
model is active, was found to give good results for all the invefor the identification of the model parameters are presented for
tigated muscles. The choice of the filter parameters is straighith muscles in Fig. 3.

IV. RESULTS

Gpre(S) =
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Fig. 3. Modeling results. Comparison of the simulated LMN model output (lower panels, solid line) and the output of the muscle (lower panelsigjdshed li

typical test input sequences (upper panels, solid line). The corresponding scheduling variable is also shown (upper panels, dashed lia#y, Aidaditiation

results with linear models are shown (lower panels, dotted line). The data sets are shown concatenated; the simulation is restarted aftgrrest meeici@a
(b) Slow muscle.

For the fast muscle, an LMN with six local models was foun#ig. 3(b). The LMN model output matches the muscle output
tobe optimal. Testresults are showninFig. 3(a). The LMN mod#dr all operating conditions. The “catch-like” effect is not

output matches the muscle output with great accuracy for almepsesent in this muscle as can be seen at the beginning of the
all operating conditions. A smallmodel error is presentin the firfitst data set.

part of the fourth data set. The “catch-like” effect which is present For comparison, the results obtained with linear models are
in this muscle is modeled accurately (middle of first data set imcluded for both muscles in Fig. 3. Although these models pro-
250 ms, fourth and fifth pulse of the second data set at 750 m&je a response which follows the muscle output on average,

For the slow muscle, a structure comprising five local modelarge errors can be observed in particular for low and for high
performed best. Results for typical test data are shown stimulation levels.
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Fig. 4. Force-frequency curve for monotonically decreasing IPI. (a) Fast muscle. (b) Slow muscle.

V. DISCUSSION spond to the force-frequency characteristics of the muscle, the

The result plots in Fig. 3 show an excellent match betwe&ﬂja“tat've shape of which is known. For a steadily increasing

the outputs of the nonlinear models and the muscle forces %pnulatlon frequency, the muscle output force increases mono-

all operating conditions present in the data. The different ChAE_nicaIIy until a saturation level is reached. A further increase of

acteristics of the muscles for varying stimulation conditions al € st|mu_lat|on frequency does not lead to a higher force gener-
modeled accurately. In particular, the “catch-like” effect (i_eatlon. This saturation effect can be observed clearly for the slow

the response to two or three closely spaced stimulation pulsi?rf'nge model [Fig. 4(b)]; itis less strong for the model of the

represented correctly in the model of the fast muscle. The L RSt muscle [Fig. 4(a)].

approach is, therefore, suitable to model the I/O characteristics?/!n9 O the dommau_on of slow _motor u_nlts n the slow
of muscle stimulated with varying IP!. muscle, we expect that this muscle will reach its saturation level

The top plot in Fig. 3(a) shows that the obtained SChedu"@%frequencies which are_lowe_r than the saturation frequency of
variable¢ resembles a scaled linear approximation of the outp © fas_t muscle. Comparm_g Fig. 4(a) and (b).’ we can conclude
of the fast muscle. Although this was not intended when the pt at this is also the case with the corresponding muscle models.
rameters of the prefilter, (8), were selected, it is a direct resugs
of choosing to work with a second-order filter. As scheduling on’ . ) )
the system output worked well for the fast muscle in [17] and AS mentioned in Section Ill, the form of LMNs used here rep-
[18], using a scheduling variable which has similar characteri&Sents a linear parameter-varying system, cf. (7). Thus, linear
tics as the output of the fast muscle is expected to be suitable fyptem characteristics can be extracted for each level of the
both the fast and the slow muscle. scheduling variablg. These characteristics can then be inter-
The validation of a model by comparing its output with expeRréted and related to properties of the physical system. A de-
imental data is useful to characterize the model performance f8fled system-theoretical analysis, with this muscle modeling
the operating conditions present in the data. Generalized st&@plication as an example, can be found in [39]. For the present
ments about the model performance can, however, only be m&@@er, we restrict ourselves to a straightforward interpretation of
if data are available for all operating conditions. This is normalij?€ changes of the steady-state gafi§p), and of the location
not possible for nonlinear models as an unlimited amount 8f th_e polesp(¢), V\_/Ith varying schedulmg variable, i.e., with
data would be required in this case. For a proper analysis of #ying muscle activation. These are defined as
model performance: it is, thereforfe, useful to employ additional G(¢) = T (¢) A" (H)b(¢) (9a)
means of model validation. We will, therefore, first analyze the oA 9%
models with respect to the force-frequency characteristics of the p(9) = eigA(¢) (9b)

muscle, and then analyze model properties such as steady-siat€are shown for both models in Fig. 5. These characteristics
gain and time-constants, and relate them to known propertiesah be interpreted as follows.

the muscles. « The steady-state gain [Fig. 5 (middle plots)] is the inte-
gral of the system response to an impulse. For the present

Analysis of Model Properties

A. Force-Frequency Characteristic

In Fig. 4, the outputs of the models are shown for a mono-
tonically increasing stimulation frequency. These curves corre-

application it, therefore, represents the amount of force
generated over time, per pulse, i.e., the force-time integral
(FTh/pulse.
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Fig. 5. Static analysis for the optimal LMN structures. (upper plots) Activations of the validity functiorls,the middle plots, the steady-state gaifisof the
interpolated models are depicted. In the middle plots, values of the two poles of the interpolated models are shown. (Note that the poles drepeadtingal
conditions.) These properties are shown as functions of the scheduling variaiblieh is related to the muscle stimulation. (a) Fast muscle. In the middle plot,
the solid line corresponds to the scaling of the lefixis and the dashed line relates to the scaling of the gightis. (b) Slow muscle.

» The location of the poles [Fig. 5 (lower plots)] charactively small. For high activation, the gain remains constant and
terizes the dynamic response of the system. The absmnzero. Thus, saturation is not present for large activations.
lute magnitude of the poles is related to the time-con- The large variation of the gain for the models of the fast
stants of the system: the larger the magnitude, the smalteascle indicates that, for this muscle, the FTl/pulse depends
is the corresponding time-constant, and the faster is tongly on the activation. This is expected as the fast muscle
system response. The system is stable if all its poles hastgows the “catch-like” effect. The large value of the gain for
a negative real part. If all poles are real (i.e., they do ngt ~ 0.5 can be related to the initial response of the model to
have an imaginary component) then the system respoma@ closely spaced input pulses (the response to a “doublet”).
is over-damped. For the model of the slow muscle, the gain varies over a much

It should be noted that this interpretation is generally only valgmaller range than the gain of the model for the fast muscle.
for a slowly changing scheduling variable as it neglegts trati-has a distinct maximum for small activation, and quickly
sient effects which can occur due to rapid changes of operatithecreases as the activation becomes larger. The gain becomes
regimes [39]. The simplified interpretation provides neverthelightly negative forp ~ 0.3. This could indicate that for this
less useful insight into the model characteristics. activation, stimulation will decrease the model output, but it is
For both models, the characteristics vary smoothly with tiso possible that transient effects are present here (which we
scheduling variable. Together with the analysis of the test andglegt in our simplified interpretation). For large activation,
training errors in Fig. 2, this indicates that the models do nthe gain is close to zero which corresponds to saturation.
over-fit the data. The limited and smooth variation of the gain for the models
For the model of the fast muscle, the gain varies over a widéthe slow muscle indicates that the FTl/pulse does not change
range, with a distinct maximum &t~ 0.5. Note that this value significantly depending on the activation. We expect such be-
of the scheduling variable is achieved by stimulation with a dotavior for this muscle as it does not show the “catch-like” ef-
blet with an IPI of 2 ms. The gain for small activation is relafect. The fact that the gain is almost zero for activations above
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¢ == 0.7 corresponds to a decrease of the FTl/pulse for intensivery different characteristics, such as muscle with a majority of
stimulation. fast motor units and muscle with mainly slow motor units.

The poles of the model of the fast muscle vary over a wide The LMNs used here represent linear time-varying systems.
range. A fast and a slow pole can be distinguished. The mdgch systems have been found to be suitable for describing
nitude of the poles is maximal fa¥ ~ 0.2 (i.e., the system re- muscle contraction under varying conditions [6], [7], [17]. The
sponse is fastest) and the value of the slow pole approaches zeghinique to change the model parameters depending on the
for ¢ ~ 0.5. This can be related to the initially very fast responseuscle activation using a scheduling variable obtained from the
of the model to two closely spaced input pulses (the responsenodel inputs can be used for muscles with very different char-
a “doublet”) where the response becomes slower once the laggéeristics.
force has been reached. For the model of the slow muscle, thdhe approach can be interpreted as a generalized form of a
poles are significantly slower than the poles of the model fédtammerstein model [21]. In the Hammerstein model structure,
the fast muscle. The slow pole changes only slightly, where@gly the gain of the model varies. In our approach, additionally
the second pole becomes close to the slow pole for increaged dynamics of the model vary for different operating regions.
activation. The analysis of the model properties shows that the variation of

This analysis shows that known properties of the muscles da@th the gain and the dynamics (i.e., location of poles) of the
be related to characteristics of the models. This verifies that th@del are required to adequately describe the characteristics of
models have not just performed a simple mapping of 1/O daf2Qth muscle types.
but have captured the muscle characteristics correctly. The anailhe model structure is controller orientated. An application
ysis reveals also that there is no strong saturation present for@hdocal control techniques based on the muscle model intro-
model of the fast muscle. This corresponds with the shape@dfced here is described in [17] and developed further in [16].
the force-frequency curve shown in Fig. 4(a). Further analysége simplicity of the model from the system theoretical point
show that the model of the fast muscle is indeed limited in th@f view is a great advantage compared to more complex muscle
it is unable to predict correctly the saturated muscle resporig@dels. Controllers which are designed based on the model
to long trains of constant stimulation with small IPI. Such inpuiresented here are able to generate stimulation patterns with
patterns were not present in the experimental data used her&/arying IPI and can, therefore, employ related nonlinear ef-

The modeling approach uses only I/O data of the muscle frdffts (such as the “catch” property) for the same mechanical
simple experiments which are designed to excite all dynanfRSPonse to be elicited by fewer impulses compared to stimula-
modes of the system. No explicit knowledge of the physioloéi-on with constant IPI. As such stimulation reduces the number
ical processes of muscle contraction was used. However, fgepetitive stimulations of the same motor units it is thought
modeling technique differs from a black-box approach in ¢hatt0 reduce fatigue [27]. Jarvéd al.[23] have also shown that for
priori knowledge about the expected muscle behavior was usgionically stimulated muscle, a lower stimulation frequency
for the selection of the scheduling variable and for the analyticg®n have positive effects on the contractile speed and power of
validation of the models obtained. Thus, the approach descrifB§ muscle. _ _
here could be termed a “grey-box” technique. The mod_el structure presenFeq here can be |mplemer)ted ina

The fact that knowledge of the physiological properties Jelatively simple way if the validity functions are storeq in thg
muscle is not used directly in the modeling approach is, ho#2™m of a lookup table. The models can be evaluated in a dis-
ever, also a potential disadvantage. All information necessan/d&te-time simulation which can be implemented easily in dig-
describe the characteristics of the muscle needs to be presefifiOmPputing hardware. In contrast to various models which
in the experimental I/O data. It is, therefore, necessary to ens@fé Pased on physiological properties of muscle [12], [37], no
that all operating conditions of interest for the intended applic3¢merical solution of continuous differential equations is neces-
tion are represented in the data. The limitations of the modelifig"y- The System can, therefore, easily be simulated in real-time.
technique become obvious for the models of the fast musdfin€ implementation used in this work, which is based on the C
which cannot predict the saturation present in real muscle ff°9ramming language, the LMNs of the muscles can be simu-
stimulation with long trains of constant high frequency. onlated approximately 50 times faster than real-time on a Pentium
way to over-come this limitation would be to include long traing' 266 MHz.

of input stimulation with different constant frequencies in thtfa Future work V;”" fOClIJS on tthet_extensmhn of tth's ?ﬁproac_rt]h
experimental data, or more general muscle contraction, such as stimulation wi

varying IPl and varying pulse intensity, and for nonisometric
contraction. The problem to obtain sufficient information for
the identification of the model parameters from experimental
Inthis paper, anovel approach to modeling of electrically stinO data will become more important for these general stimu-
ulated muscle under conditions of isometric contraction has bdation conditions. Generalized recommendations on the amount
presented. The model is nonlinear and its structure is basedobmlata required to identify a good model are difficult to make
a network of locally valid linear models which are blended tasince the important aspect is that the data obtained cover all op-
gether by a scheduler to form a LMN. The model accounts ferating regions which are of interest. Thus, the experiments to
nonlinear effects due to variations of the stimulation frequenaybtain the data need to be planned carefully to ensure that all
suchasthe “doublet” effect. Itwas shown that this modeling tectelevant operating conditions are covered. The performance of
nique is suitable for modeling the contraction of muscles witine model on the data used to identify the parameters should be

VI. CONCLUSION
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similar to that on unseen test data which indicates that the modglg]
did not simply memorise the data but is able to generalize.

The structure of the model can be extended by extra
scheduling variables to account for additional nonlinear charf9]
acteristics. Nonlinearities due to varying pulse intensity can
be taken into account by scheduling on this variable. Change[§0]
of the muscle characteristics with changing length during
nonisometric contraction can be accounted for by using th
muscle length as a scheduling variable. Thus, the present mocftze}]
structure can be adapted to represent those muscle characteris-
tics relevant for the intended application of the model. [22]
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