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A Nonlinear Approach to Modeling of Electrically
Stimulated Skeletal Muscle

Henrik Gollee*, David J. Murray-Smith, and Jonathan C. Jarvis

Abstract—This paper is concerned with the development and
analysis of a nonlinear approach to modeling of the contraction
of electrically stimulated skeletal muscle. The model structure is
based on a network of locally valid linear models which are blended
together by a scheduler. Data are from experiments with rabbit tib-
ialis anterior muscles in which the muscles contracted isometrically
while being stimulated by supramaximal impulses with randomly
varying inter-pulse intervals. The model accounts for nonlinear
effects due to variations of the stimulation frequency, such as the
“catch-like” effect. It is shown that this modeling technique is
suitable for modeling the contraction of muscles with very different
characteristics, such as muscle with a majority of fast motor units
and muscle with mainly slow motor units. The approach is also
suitable as a basis for the design of muscle stimulation controllers.

Index Terms—Functional electrical stimulation, local model net-
work, muscle modeling, nonlinear system identification.

I. INTRODUCTION

FOR muscle which has lost nervous control, artificial elec-
trical stimulation can be used as a technique aimed at pro-

viding muscular contraction and producing a functionally useful
movement [28]. This is generally referred to as functional elec-
trical stimulation (FES) and is used in different application areas
such as the rehabilitation of paralyzed patients in whom nat-
ural neural control of muscular contraction has been lost due to
a spinal cord injury [20], [35] and in cardiac assistance where
skeletal muscle can be used to support a failing heart [38]. For
both these FES applications, a model of the muscle is essen-
tial to develop algorithms for its controlled stimulation. Such a
model needs to describe the nonlinearities within the behavior
of the muscle that are relevant to the intended application. The
model parameters need to be easily adjustable, and capable of
derivation from the results of standard experiments which do
not damage the muscle. The structure of the model needs to be
controller-orientated, that is, controller design based on such a
model should be possible. The designed controller must not be
computationally expensive if it is to be implemented in the form
of an implantable device.

An extensive review of various muscle modeling approaches
can be found in [43]. Many muscle models are based on an anal-
ysis of the physiological principle of muscle contraction, either
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on a macroscopic or on a microscopic level. Such models have
the advantage that their parameters can often be directly related
to characteristics of the muscle. On the other hand, such models
tend to be complex and thus computationally expensive. Their
parameters are often difficult to identify, and their structure is
rarely controller orientated.

Another common modeling approach is to use empirical
model strategies which aim to describe the input–output (I/O)
characteristics of muscle (often limited to conditions common
in FES applications) and are purely based on I/O data. The
simplest form of an empirical model of muscle contraction is
a linear second-order dynamic model which has been found
adequate to describe isometric contraction [30], [43] and
nonisometric contraction [2], [3] under constant stimulation
conditions (e.g., constant pulse energy and frequency).

Nonlinear effects of varying motor-unit recruitment for non-
constant stimulation are often accounted for by adding a static
recruitment curve which results in a Hammerstein model [4],
[40], [15]. A model with this structure can be transformed easily
into a form suitable for linear controller design by shaping the
control signal by the inverse static recruitment curve [14], [20].
Generally, however, the process of motor unit recruitment is not
static as it includes, for example, hysteresis effects and the as-
sumption that the dynamics of the muscle can be described by a
linear time-invariant transfer function does not hold if the level
of activation varies over a wide range [21].

Most empirical model structures account only for effects due
to varying stimulation levels but are unable to describe changes
of the muscle characteristics with varying stimulation frequency,
or varying inter-pulse interval (IPI). Controller-orientated
models which describe nonlinear properties related to variations
of the stimulation frequency should be very useful for FES, as
it is important to employ such nonlinear characteristics to stim-
ulate the muscle in a way which is closer to natural stimulation
patterns, and this can help to reduce muscle fatigue [27].

It is well known that muscle characteristics vary significantly
with the stimulation frequency [9]. The static force (that is, the
sustained force of a tetanic contraction) increases in a sigmoidal
way for steadily increasing frequency of stimulation (the force-
frequency curve). Generally, the force-frequency relationship is
not static; the force developed by the muscle depends on the his-
tory of the stimulation frequency in a dynamic way [5], [13]. A
nonlinear summation of contraction for stimulation pulses with
a very short IPI can be observed in many muscles, and the phrase
“catch-like” effect is often used to refer to this. The effect is de-
scribed by, e.g., Burkeet al. [8], Binder-Macleod, and Barrish
[5], and analyzed in [33] and [41]. As the “catch-like” effect is
normally initiated by a doublet or triplet of pulses with short IPI,
it is sometimes referred to as the “doublet” or “triplet” effect.
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Bobet et al. [7] showed that a linear time-varying model
can successfully describe muscle contraction under conditions
where pulse energy and/or stimulation frequency vary. In their
model structure, the muscle force is approximated by a critically
damped, linear second-order system which is time-invariant
between stimulation pulses. The model parameters are adapted
separately for each IPI. This results in an overall model with
as many linear models as IPIs. The fact that this approach can
approximate isometric muscle contraction under various stimu-
lation conditions shows that a second-order time-variant linear
model is an appropriate model structure. The approach was
developed further to a linear time-varying Wiener-type model
in which a static nonlinearity is placed between two first-order
transfer functions [6]. The time-constant of the second transfer
function varies with the force. Good matches were found with
experimental data for stimulation with varying IPI.

Donaldsonet al. [11] obtained encouraging results using a
radial basis function network to model isometric contraction of
muscle which is stimulated with supramaximal pulse trains of
varying frequency. This approach was developed further using
local descriptions of muscle characteristics by second-order
linear models which are valid for certain operating regions [17].
These local models are blended together using a scheduler which
selects the model closest to the current operating point, and
interpolates between models. As this overall blended structure
represents a time-varying linear model, the approach is closely
related to to the work presented by Bobetet al.in [6] and [7]. The
model developed in [17] was, however, found to be suitable only
for muscle with a majority of fast motor units. Thus, the approach
was extended and generalized, and the model presented in this
paper can be used with a wider range of muscles.

This paper is structured as follows. In Section II, the experi-
mental setup for the data collection is described. Data for con-
traction with constant muscle length were collected from two
muscles with very different characteristics. The empirical mod-
eling approach which is based on a decomposition of the oper-
ating space into smaller sub-regions is introduced in Section III.
Results which compare the model output with the experimental
data are presented in Section IV. These results are discussed and
the model properties are analyzed in Section V. Conclusions are
presented in the final section.

II. M ETHODS

The data used in this paper were obtained from experiments
with rabbit tibialis anterior muscles. The muscles were stimu-
lated indirectly by irregular supramaximal pulse trains using flap
electrodes placed around both common peroneal nerves. The
termsupramaximalrefers to the fact that theamplitudeand length
of the stimulation pulses were chosen such that all motoneurons
of the muscle were recruited. The activation of the muscles was
varied by changes of the IPIs of the stimulation pulses.

The experimental protocol is described in detail in [29]. The
following conditions are particularly relevant for our studies and
apply to all experiments.

• The muscles were stimulated using electrical impulses
of 200- s duration and an amplitude three times the
threshold for muscle stimulation, which ensures supra-
maximal stimulation.

• The IPIs were varied randomly between 1 and 70 ms.
• The maximum duration of each pulse train was 300 ms.

Together with periods of rest of 30 s between the pulse
trains, this ensured that the influence of fatigue on the
recorded data was minimized.

• A constant-frequency burst of impulses (25-ms IPI, which
corresponds to a stimulation frequency of 40 Hz) was de-
livered every 5 min to check that the preparation did not
show progressive deterioration during the experiment.

• The data were recorded with a sampling interval of
1 ms.

Thecontractile forceof themusclewasmeasuredandrecorded
while the muscle contracted isometrically, i.e., the muscle length
was held constant. In our experimental setup, the muscle pulls a
lever which is attached to a servomotor. The muscle length was
controlled and the force measured by means of this servomotor
which was designed for this purpose (Model 310B, Cambridge
Instruments, Watertown Massachusetts). This instrument is
capable of setting and holding length with an error of less than
0.01 mm against forces of up to 50 N. The linearity of the force
measurement is within 0.2% of the force range, and the resolu-
tion of the force signal is 0.01 N. In practice, the resolution of
the experimental data was determined by the 12-bit analog-to-
digital converter that we used so that the working resolution was
approximately 0.02 N for force, and 0.02 mm for length.

The experimental data were preprocessed such that the offset
in the measured force was removed, and the input and output data
setswerenormalized insuchawaythat they lay in the range.

Two types of muscle were used in the experiments, a control
muscle and a chronically stimulated muscle.

The control muscle is an unchanged rabbit tibialis anterior
whose characteristics are determined by a majority of fast motor
units. We will, therefore, refer to it as thefast muscle. A total
of 60 data sets, containing the input pulses and the contractile
force were recorded. The duration of each set is 590 ms.

Thechronically stimulatedmuscle is a rabbit tibialis anterior
which was stimulated at 10 Hz for four weeks. As outlined in
[22], such chronic stimulation reduces the contractile speed of
the muscle. The muscle characteristics are, therefore, dominated
by slow motor units, and we will refer to this muscle as theslow
muscle. A total of 84 data sets, containing the input pulses and the
contractile forcewasrecorded.Thedurationofeachset is600ms.

III. M ODELLING

Thebasic ideaof themodelingapproachemployed in thiswork
is to divide a complex nonlinear modeling task into smaller and
simpler sub-tasks. Each sub-task can then be handled locally by
a simpler model. A scheduler is used to decide how relevant the
models are for the current operating condition and weights them
accordingly. The overall model is the sum of all weighted local
models. This approach is referred to as a local model network
(LMN) [24]. The relationship between LMNs and other ap-
proaches,suchas thosebasedon fuzzy logic, is reviewed in [25].

The local models used to form a LMN can generally be of any
form, e.g., linear or nonlinear, in I/O or state-space form, empir-
ical or based on physical analysis. It is often straightforward to
incorporatea priori knowledge when selecting the structure of
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Fig. 1. LMN in state-space representation.

the local models. We will restrict ourselves to locallinear de-
scriptions, employing the concept of local linearization.

To illustrate the modeling concept, we consider the following
general time-invariant nonlinear system in state space form

(1a)

(1b)

Here, and are nonlinear, continuous differen-
tiable functions. For simplicity, we restrict ourselves to
single-input–single-output system, i.e., the inputand the
output are scalar. The dimensionalityof the state vector
defines the dynamic order of the system as a function of time
, and denotes the derivative of the state with respect to

time, . The scalar is a time-delay, and the initial
state at 0 is .

In the state-space description (1), there are two nonlinear
functions, and , which can each be approximated by means
of a local function decomposition. The system can then be
rewritten as a weighted sum of local models

(2a)

(2b)

which is a LMN representation of the system (1). Here,
and are local approximations for and , respectively,
for the operating conditions where the corresponding validity
function is active. The set of validity functions forms
the scheduler, where is the scheduling vector. This structure
is shown in Fig. 1.

Employing the concept of local linearization for different op-
erating conditions, we choose to work with standard linear local
state-space representations [26]. This results in

(3a)

(3b)

with . The overall system can then be approxi-
mated as

(4a)

(4b)

An equivalent discrete-time form which is suitable for imple-
mentation in real-time computing hardware, can be obtained by
transforming the system (4) intooperator form [31]

(5a)

(5b)

Here, denotes the sampling period, is the
sample index, and is the input delay defined as .

It should be noted that (4) and (5) represent linear parameter-
varying (LPV) systems in which the parameters depend on the
scheduling vector . For (4), we can substitute the interpolated
model parameters as functions of

(6)
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Fig. 2. Training and test mses for LMN structures with one to eight units, simulated with an infinite prediction horizon. (a) Fast muscle. (b) Slow muscle.

The system can then be rewritten as an LPV system

(7a)

(7b)

Equations (5) can be rewritten in a similar way.
The model properties of the system (7) can be analyzed lo-

cally using methods which are based on standard linear system
analysis [39]. This provides a means of checking the local model
properties against known characteristics of the real system.

Local models of second-order were found to be optimal for
the given application which is in agreement with other findings,
e.g., [43], [7]. A time-delay of 5 ms was detected.

We chose to work with a set of quadratic B-splines [10] for the
validity functions in (4). This ensured both a localized
region of activity for each local model and a smooth interpola-
tion between neighboring models.

The scheduling vector should represent the nonlinear
changes of the system characteristics. It can generally be the
input or the output of the system, or a combination of both. In
[17] and [18], the output of the system was used to select which
local model is active. In the experiments presented here, this
approach did not generally yield satisfying modeling results,
as it showed good results only with the fast muscle, but failed
for the slow muscle.

Another straightforward choice for the scheduling variable
is to use a measurement of the instantaneous stimulation fre-
quency. As the current stimulation frequency cannot be deter-
mined for a sequence of pulses with randomly varying IPI, it is
approximated by filtering the input pulses using a second-order
critically damped low-pass system with the transfer function

(8)

This approach which uses the system input to select which local
model is active, was found to give good results for all the inves-
tigated muscles. The choice of the filter parameters is straight-

forward: the damping factor is set to 1 to obtain a critically
damped response. The factoris selected such that the filtered
variable lies approximately within the input range of the validity
functions, i.e., between zero and one. The natural frequency
was selected empirically. We found that its exact value is not
critical as the model structure can compensate for a nonoptimal
choice. Thus, for our experiments we chose to work with
1, 50, 25 10 .

The parameters of the local models in (4) or (5),
, can be optimized with an infinite

prediction horizon using the Levenberg–Marquardt algorithm
[36]. The number of local models is determined by successively
increasing the network size until an optimum with respect to
the mean-squared-error (mse) on test data is reached. Note that
this definition of the optimal size does not necessarily find
the simplest acceptable structure. This could be achieved by
extending the mse criterion with a penalty term for the number
of parameters, such as in Akaike’s Information Criterion [1].

IV. RESULTS

The LMN approach was used to obtain models for the fast
and the slow muscle introduced in Section II. For each muscle,
30 data sets were used for the identification of the model pa-
rameters. The models were then validated using the remaining
test data sets (30 sets for the fast muscle and 54 sets for the
slow muscle). Starting with a single local model (i.e., with a
linear model), the number of local models in the structure was
steadily increased. Whereas the error on the training data de-
creases monotonically with the number of units in the LMN,
the error on the test data sets starts to increase after the optimal
model size has been reached which indicates over-fitting of the
data [19]. This is shown in Fig. 2. The structure with the smallest
test error is then selected as the optimal one for each muscle.

Test results for some typical data sets which were not used
for the identification of the model parameters are presented for
both muscles in Fig. 3.
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Fig. 3. Modeling results. Comparison of the simulated LMN model output (lower panels, solid line) and the output of the muscle (lower panels, dashed line) for
typical test input sequences (upper panels, solid line). The corresponding scheduling variable is also shown (upper panels, dashed line). Additionally, simulation
results with linear models are shown (lower panels, dotted line). The data sets are shown concatenated; the simulation is restarted after each set. (a) Fast muscle.
(b) Slow muscle.

For the fast muscle, an LMN with six local models was found
tobeoptimal.Test resultsareshown inFig.3(a).TheLMNmodel
output matches the muscle output with great accuracy for almost
all operatingconditions.A small modelerror ispresent in the first
part of the fourth dataset. The “catch-like”effect which ispresent
in this muscle is modeled accurately (middle of first data set at
250 ms, fourth and fifth pulse of the second data set at 750 ms).

For the slow muscle, a structure comprising five local models
performed best. Results for typical test data are shown in

Fig. 3(b). The LMN model output matches the muscle output
for all operating conditions. The “catch-like” effect is not
present in this muscle as can be seen at the beginning of the
first data set.

For comparison, the results obtained with linear models are
included for both muscles in Fig. 3. Although these models pro-
vide a response which follows the muscle output on average,
large errors can be observed in particular for low and for high
stimulation levels.
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Fig. 4. Force-frequency curve for monotonically decreasing IPI. (a) Fast muscle. (b) Slow muscle.

V. DISCUSSION

The result plots in Fig. 3 show an excellent match between
the outputs of the nonlinear models and the muscle forces for
all operating conditions present in the data. The different char-
acteristics of the muscles for varying stimulation conditions are
modeled accurately. In particular, the “catch-like” effect (i.e.,
the response to two or three closely spaced stimulation pulses) is
represented correctly in the model of the fast muscle. The LMN
approach is, therefore, suitable to model the I/O characteristics
of muscle stimulated with varying IPI.

The top plot in Fig. 3(a) shows that the obtained scheduling
variable resembles a scaled linear approximation of the output
of the fast muscle. Although this was not intended when the pa-
rameters of the prefilter, (8), were selected, it is a direct results
of choosing to work with a second-order filter. As scheduling on
the system output worked well for the fast muscle in [17] and
[18], using a scheduling variable which has similar characteris-
tics as the output of the fast muscle is expected to be suitable for
both the fast and the slow muscle.

The validation of a model by comparing its output with exper-
imental data is useful to characterize the model performance for
the operating conditions present in the data. Generalized state-
ments about the model performance can, however, only be made
if data are available for all operating conditions. This is normally
not possible for nonlinear models as an unlimited amount of
data would be required in this case. For a proper analysis of the
model performance, it is, therefore, useful to employ additional
means of model validation. We will, therefore, first analyze the
models with respect to the force-frequency characteristics of the
muscle, and then analyze model properties such as steady-state
gain and time-constants, and relate them to known properties of
the muscles.

A. Force-Frequency Characteristic

In Fig. 4, the outputs of the models are shown for a mono-
tonically increasing stimulation frequency. These curves corre-

spond to the force-frequency characteristics of the muscle, the
qualitative shape of which is known. For a steadily increasing
stimulation frequency, the muscle output force increases mono-
tonically until a saturation level is reached. A further increase of
the stimulation frequency does not lead to a higher force gener-
ation. This saturation effect can be observed clearly for the slow
muscle model [Fig. 4(b)]; it is less strong for the model of the
fast muscle [Fig. 4(a)].

Owing to the domination of slow motor units in the slow
muscle, we expect that this muscle will reach its saturation level
at frequencies which are lower than the saturation frequency of
the fast muscle. Comparing Fig. 4(a) and (b), we can conclude
that this is also the case with the corresponding muscle models.

B. Analysis of Model Properties

As mentioned in Section III, the form of LMNs used here rep-
resents a linear parameter-varying system, cf. (7). Thus, linear
system characteristics can be extracted for each level of the
scheduling variable . These characteristics can then be inter-
preted and related to properties of the physical system. A de-
tailed system-theoretical analysis, with this muscle modeling
application as an example, can be found in [39]. For the present
paper, we restrict ourselves to a straightforward interpretation of
the changes of the steady-state gains, , and of the location
of the poles, , with varying scheduling variable, i.e., with
varying muscle activation. These are defined as

(9a)

(9b)

and are shown for both models in Fig. 5. These characteristics
can be interpreted as follows.

• The steady-state gain [Fig. 5 (middle plots)] is the inte-
gral of the system response to an impulse. For the present
application it, therefore, represents the amount of force
generated over time, per pulse, i.e., the force-time integral
(FTI)/pulse.
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(a) (b)

Fig. 5. Static analysis for the optimal LMN structures. (upper plots) Activations of the validity functions,� . In the middle plots, the steady-state gains,G, of the
interpolated models are depicted. In the middle plots, values of the two poles of the interpolated models are shown. (Note that the poles are real for all operating
conditions.) These properties are shown as functions of the scheduling variable� which is related to the muscle stimulation. (a) Fast muscle. In the middle plot,
the solid line corresponds to the scaling of the lefty axis and the dashed line relates to the scaling of the righty axis. (b) Slow muscle.

• The location of the poles [Fig. 5 (lower plots)] charac-
terizes the dynamic response of the system. The abso-
lute magnitude of the poles is related to the time-con-
stants of the system: the larger the magnitude, the smaller
is the corresponding time-constant, and the faster is the
system response. The system is stable if all its poles have
a negative real part. If all poles are real (i.e., they do not
have an imaginary component) then the system response
is over-damped.

It should be noted that this interpretation is generally only valid
for a slowly changing scheduling variable as it neglegts tran-
sient effects which can occur due to rapid changes of operating
regimes [39]. The simplified interpretation provides neverthe-
less useful insight into the model characteristics.

For both models, the characteristics vary smoothly with the
scheduling variable. Together with the analysis of the test and
training errors in Fig. 2, this indicates that the models do not
over-fit the data.

For the model of the fast muscle, the gain varies over a wide
range, with a distinct maximum at . Note that this value
of the scheduling variable is achieved by stimulation with a dou-
blet with an IPI of 2 ms. The gain for small activation is rela-

tively small. For high activation, the gain remains constant and
nonzero. Thus, saturation is not present for large activations.

The large variation of the gain for the models of the fast
muscle indicates that, for this muscle, the FTI/pulse depends
strongly on the activation. This is expected as the fast muscle
shows the “catch-like” effect. The large value of the gain for

can be related to the initial response of the model to
two closely spaced input pulses (the response to a “doublet”).

For the model of the slow muscle, the gain varies over a much
smaller range than the gain of the model for the fast muscle.
It has a distinct maximum for small activation, and quickly
decreases as the activation becomes larger. The gain becomes
slightly negative for . This could indicate that for this
activation, stimulation will decrease the model output, but it is
also possible that transient effects are present here (which we
neglegt in our simplified interpretation). For large activation,
the gain is close to zero which corresponds to saturation.

The limited and smooth variation of the gain for the models
of the slow muscle indicates that the FTI/pulse does not change
significantly depending on the activation. We expect such be-
havior for this muscle as it does not show the “catch-like” ef-
fect. The fact that the gain is almost zero for activations above
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corresponds to a decrease of the FTI/pulse for intensive
stimulation.

The poles of the model of the fast muscle vary over a wide
range. A fast and a slow pole can be distinguished. The mag-
nitude of the poles is maximal for (i.e., the system re-
sponse is fastest) and the value of the slow pole approaches zero
for . This can be related to the initially very fast response
of the model to two closely spaced input pulses (the response to
a “doublet”) where the response becomes slower once the large
force has been reached. For the model of the slow muscle, the
poles are significantly slower than the poles of the model for
the fast muscle. The slow pole changes only slightly, whereas
the second pole becomes close to the slow pole for increased
activation.

This analysis shows that known properties of the muscles can
be related to characteristics of the models. This verifies that the
models have not just performed a simple mapping of I/O data,
but have captured the muscle characteristics correctly. The anal-
ysis reveals also that there is no strong saturation present for the
model of the fast muscle. This corresponds with the shape of
the force-frequency curve shown in Fig. 4(a). Further analyses
show that the model of the fast muscle is indeed limited in that
it is unable to predict correctly the saturated muscle response
to long trains of constant stimulation with small IPI. Such input
patterns were not present in the experimental data used here.

The modeling approach uses only I/O data of the muscle from
simple experiments which are designed to excite all dynamic
modes of the system. No explicit knowledge of the physiolog-
ical processes of muscle contraction was used. However, the
modeling technique differs from a black-box approach in thata
priori knowledge about the expected muscle behavior was used
for the selection of the scheduling variable and for the analytical
validation of the models obtained. Thus, the approach described
here could be termed a “grey-box” technique.

The fact that knowledge of the physiological properties of
muscle is not used directly in the modeling approach is, how-
ever, also a potential disadvantage. All information necessary to
describe the characteristics of the muscle needs to be presented
in the experimental I/O data. It is, therefore, necessary to ensure
that all operating conditions of interest for the intended applica-
tion are represented in the data. The limitations of the modeling
technique become obvious for the models of the fast muscle
which cannot predict the saturation present in real muscle for
stimulation with long trains of constant high frequency. One
way to over-come this limitation would be to include long trains
of input stimulation with different constant frequencies in the
experimental data.

VI. CONCLUSION

In thispaper,anovelapproach tomodelingofelectrically stim-
ulated muscle under conditions of isometric contraction has been
presented. The model is nonlinear and its structure is based on
a network of locally valid linear models which are blended to-
gether by a scheduler to form a LMN. The model accounts for
nonlinear effects due to variations of the stimulation frequency,
suchas the “doublet”effect. Itwasshown that thismodeling tech-
nique is suitable for modeling the contraction of muscles with

very different characteristics, such as muscle with a majority of
fast motor units and muscle with mainly slow motor units.

The LMNs used here represent linear time-varying systems.
Such systems have been found to be suitable for describing
muscle contraction under varying conditions [6], [7], [17]. The
technique to change the model parameters depending on the
muscle activation using a scheduling variable obtained from the
model inputs can be used for muscles with very different char-
acteristics.

The approach can be interpreted as a generalized form of a
Hammerstein model [21]. In the Hammerstein model structure,
only the gain of the model varies. In our approach, additionally
the dynamics of the model vary for different operating regions.
The analysis of the model properties shows that the variation of
both the gain and the dynamics (i.e., location of poles) of the
model are required to adequately describe the characteristics of
both muscle types.

The model structure is controller orientated. An application
of local control techniques based on the muscle model intro-
duced here is described in [17] and developed further in [16].
The simplicity of the model from the system theoretical point
of view is a great advantage compared to more complex muscle
models. Controllers which are designed based on the model
presented here are able to generate stimulation patterns with
varying IPI and can, therefore, employ related nonlinear ef-
fects (such as the “catch” property) for the same mechanical
response to be elicited by fewer impulses compared to stimula-
tion with constant IPI. As such stimulation reduces the number
of repetitive stimulations of the same motor units it is thought
to reduce fatigue [27]. Jarviset al.[23] have also shown that for
chronically stimulated muscle, a lower stimulation frequency
can have positive effects on the contractile speed and power of
the muscle.

The model structure presented here can be implemented in a
relatively simple way if the validity functions are stored in the
form of a lookup table. The models can be evaluated in a dis-
crete-time simulation which can be implemented easily in dig-
ital computing hardware. In contrast to various models which
are based on physiological properties of muscle [12], [37], no
numerical solution of continuous differential equations is neces-
sary. The system can, therefore, easily be simulated in real-time.
In the implementation used in this work, which is based on the C
programming language, the LMNs of the muscles can be simu-
lated approximately 50 times faster than real-time on a Pentium
II, 266 MHz.

Future work will focus on the extension of this approach
for more general muscle contraction, such as stimulation with
varying IPI and varying pulse intensity, and for nonisometric
contraction. The problem to obtain sufficient information for
the identification of the model parameters from experimental
I/O data will become more important for these general stimu-
lation conditions. Generalized recommendations on the amount
of data required to identify a good model are difficult to make
since the important aspect is that the data obtained cover all op-
erating regions which are of interest. Thus, the experiments to
obtain the data need to be planned carefully to ensure that all
relevant operating conditions are covered. The performance of
the model on the data used to identify the parameters should be
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similar to that on unseen test data which indicates that the model
did not simply memorise the data but is able to generalize.

The structure of the model can be extended by extra
scheduling variables to account for additional nonlinear char-
acteristics. Nonlinearities due to varying pulse intensity can
be taken into account by scheduling on this variable. Changes
of the muscle characteristics with changing length during
nonisometric contraction can be accounted for by using the
muscle length as a scheduling variable. Thus, the present model
structure can be adapted to represent those muscle characteris-
tics relevant for the intended application of the model.
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