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Genetic variation in eggshell crystal size and orientation is large and these traits are 3 

correlated with shell thickness and are associated with eggshell matrix protein 4 

markers 5 
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Abstract 1 

The size and orientation of the calcium carbonate crystals influence the structure and 2 

strength of the chickens eggshell.  In this study estimates of heritability for crystal size 3 

were found to be high (0.6) and moderate for crystal orientation (0.3). There was a 4 

strong positive correlation for crystal size and orientation with the thickness of the 5 

shell, and in particular the thickness of the mammillary layer (0.65). Correlations with 6 

shell breaking strength was positive but with a high error. This was contrary to 7 

expectation as in man made materials smaller crystals would be stronger.  We believe 8 

the results of this study support the hypothesis that the structural organisation of shell, 9 

and in particular the mammillary layer, is influenced by crystal size and orientation 10 

especially during the initial phase of calcification.  11 

Genetic associations for crystal measurements were observed between haplotype 12 

blocks or individual markers for a number of eggshell matrix proteins.  Ovalbumin, 13 

and ovotransferrin (LTF) markers for example were associated with crystal size while  14 

ovocleidin-116 and ovocalyxin 32 (RARRES1) markers were associated with crystal 15 

orientation.  The location of these proteins in the eggshell is consistent with different 16 

phases of the shell formation process. 17 

In conclusion the variability of crystal size and to a lesser extent orientation appear to 18 

have a large genetic component and the formation of calcite crystals are intimately 19 

related to the ultrastructure of the eggshell. Moreover this study also provides 20 

evidence that proteins in the shell influence the variability of crystal traits and in turn 21 

the shells thickness profile. The crystal measurements and/or the associated genetic 22 

markers may therefore prove to be useful in selection programs to improve eggshell 23 

quality.  24 

Keywords: Eggshell, Egg, CaCO3 Crystal, Matrix protein, markers  25 

26 



 3 

Introduction 1 

 2 

Cracked and damaged eggs amount to 6 and 8% of total production (Hamilton et al., 3 

1979) and therefore result in substantial economic loss to the egg industry.  Improving 4 

the quality of the eggshell by genetic selection is therefore of importance as this  will 5 

help ameliorate these losses (Preisinger and Flock, 2000). However before this is 6 

possible it is first necessary to establish and then measure the basic components of the 7 

eggshells which contribute to its mechanical strength. 8 

The eggshell of the domestic chicken is a bioceramic material comprised of columnar 9 

calcite (CaCO3) crystals and a pervading organic proteinaceous matrix.  It forms  a 10 

unique protective barrier that impedes bacterial penetration while allowing the 11 

interchange of water and gases needed for the development of the chick embryo (Nys 12 

et al., 1999). It is well established that thickness of the shell  ( typically 300-400 µm) 13 

contributes to its breaking strength and its integrity (Tyler and Geake, 1961, Bain, 14 

1990). However, the size of the calcite crystals, their shape and crystallographic 15 

orientation (collectively referred to in the literature as the microstructural properties of 16 

the shell)  can also significantly contribute to the shell’s mechanical properties 17 

(Rodriguez-Navarro et al., 2002). For instance, the microstructure of the guinea fowl 18 

eggshell, formed by the intricate interlacing of crystal units, are much tougher than 19 

eggs of similar thickness formed by straight columnar units such as that found in 20 

chicken eggs (Panheleux et al., 1999). Moreover chicken eggshells consisting of 21 

highly oriented crystals of abnormal sizes have been reported to be generally weaker 22 

than those consisting of smaller and less oriented crystals (Rodriguez-Navarro et al., 23 

2002, Ahmed et al., 2005). This is not surprising given that in other polycrystalline 24 

materials the resistance to fracture or toughness increases as the crystal size decreases 25 
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(Hall, 1951) since  less external energy (e.g. an external insult) is required  for a crack 1 

to propagate across brittle large crystals than among smaller crystals. Thus an 2 

increased preferential orientation of calcite crystals in the chicken egg should result in  3 

a weaker eggshell (Rodriguez-Navarro et al., 2002). Given this argument one would 4 

expect that the  microstructural organisation of an eggshell would  have a strong 5 

genetic determination (Rodriguez-Navarro, 2007). This implies that within a species 6 

there may be useful genetic variation in the nucleation and growth  of calcite crystals 7 

during shell formation   which are controlled by the eggshell matrix protein precursors 8 

present in the uterine fluid (Hernandez-Hernandez et al., 2008).  If this is the case then 9 

it  should be possible to improve eggshell quality by genetic selection of hens with 10 

eggshell properties that provide a mechanical advantage. However, until now this has 11 

not been possible as quantification of eggshell microstructure has been time 12 

consuming and tedious.  13 

In this study a new rapid and efficient method for measuring the size and orientation 14 

of eggshell microstructural properties  is described  .  The method described is based 15 

on the analysis of two dimensional X-ray diffraction  (2D-XRD) patterns formed by 16 

intact eggshells and recorded with an area detector (Rodriguez-Navarro, 2007). The 17 

intensity of the spots displayed in these patterns is directly related to the size of 18 

crystals in egg shells (Rodríguez-Navarro et al., 2006, Rodriguez-Navarro et al., 19 

2007).  20 

The main aim of our study was to use this 2D-XRD method to estimate how much of 21 

the variance observed in the size and orientation of crystals in eggshells can be 22 

attributed to genetics by quantifying the heritability of these microstructural 23 

parameters in a line of Rhode Island Red hens which we have previously 24 

characterised for other egg quality traits (Dunn et al., 2005, Dunn et al., 2009). In 25 
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addition we wanted to investigate which genes determine the variability of an 1 

eggshells microstructural properties so we also looked for association between 2 

molecular markers in genes involved in egg shell formation,  including eggshell 3 

matrix proteins, (Dunn et al., 2009). These organic components are known from 4 

biochemical and crystallization in-vitro tests, to control the nucleation and growth of 5 

calcite crystals (Arias and Fernandez, 2001, Fernandez et al., 2004, Hernandez-6 

Hernandez et al., 2008) but the precise role of these components during the different 7 

stages of eggshell formation are not yet fully understood.  8 

 9 

Methods 10 

Animals and egg collection 11 

A Rhode Island Red pedigree line that contributes to the male line used to produce 12 

Lohmann Brown commercial layer hens was used in this study. The population has 13 

previously been described in other publications (Dunn et al., 2005, Dunn et al., 2009).   14 

Briefly the study population comprised 32 sires and 237 dams with samples of 2 eggs 15 

from 898 of the female offspring for crystal microstructure. The offspring resulted 16 

from 5 hatches that were housed in individual cages on 16 hours of light per day in 17 

two separate houses at the same location. The eggs were sampled in separate batches 18 

between 38 and 42 weeks of age in such a way that each batch of eggs came from a 19 

quarter of the population on each occasion. In this study our objective was to extend 20 

our existing data set of phenotypic eggshell quality traits for this population with the 21 

newly available crystal measurements which were carried out on the same eggs. This 22 

allowed comparison with the existing measurements. 23 

 24 

 25 
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Phenotypic measurements 1 

Weight and mechanical traits 2 

Eggs were weighed (g) and,  the dynamic stiffness (Kdyn, N/m), breaking strength (N) , 3 

and stiffness  (N/mm) (defined as breaking strength/deformation at fracture),  were 4 

measured as described previously (Dunn et al., 2005).  5 

Thickness traits 6 

The  thickness of the mammillary layer (mm) , the effective thickness (combined 7 

palisade, vertical crystal layer and cuticle (mm))  and the total shell thickness (mm) 8 

were measured by scanning electron microscopy (SEM) (Panheleux et al., 1999) on 3 9 

sections of eggshell derived from each  egg.  10 

Assessment of Eggshell microstructure 11 

Pieces (about 1x1 cm) of eggshell were removed from the equator of each egg using a 12 

dental drill fitted with a diamond tipped circular saw. These were then mounted on a 13 

sample holder of a single-crystal diffractometer equipped with a CCD area detector 14 

(D8 Smart APEX, Bruker, Germany).  In the 2D-XRD measurements, the working 15 

conditions were: Mo Kα (λ = 0.7093 Å), 50 kV and 30 mA, a pin-hole collimator of 16 

0.5 mm in diameter, and an exposure time of 20 s per frame. Samples were mounted 17 

so that the outer shell surface faced the area detector and the inner surface faced the 18 

incident X-ray beam. Using this set up the X-ray beam passes through the sample and 19 

a 2D diffraction pattern or frame is recorded on the area detector. The registered 20 

diffraction patterns from eggshells consists of concentric spotty rings (Debye-Scherrer 21 

rings). Each spot within a ring corresponds to a hkl reflection of a calcite crystal 22 

whose (hkl) planes are oriented in diffraction conditions.  23 

XRD2DScan software (Rodríguez-Navarro et al., 2006) was used to automatically 24 

analyze the 2D diffraction patterns by measuring the intensity of the reflection spots 25 
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in five Debye-Scherrer rings, associated with the strongest calcite reflections: 104, 1 

110, 113, 108, 202.  The data from the five rings were added to give the total peak 2 

area (TA) to minimise the influence of any preferential orientation of crystals and to 3 

lower data variability. Each eggshell sample was measured in three different locations 4 

to further improve the estimate.  To convert the TA value to crystal size,  the TA 5 

values  were calibrated against the average crystal size determined by analyzing thin 6 

sections of 10 eggshells using optical microscopy (Rodriguez-Navarro et al., 2006; 7 

2007). The selected eggshells used for this calibration covered a wide range of TA 8 

values (figure 2).  As crystal size and TA were linearly related, we have chosen to use 9 

crystal size in this paper to facilitate understanding. 10 

A quantitative estimation of the degree of crystal orientation was obtained using the 11 

ratio between the integrated intensities of the calcite reflections from the intact 12 

eggshell and that of a random sample. The integrated intensities of the strongest 13 

calcite reflections were normalized by their values in a calcite powder standard 14 

representing a randomly oriented sample. Using the slope of the regression line 15 

between the normalized intensity ratios and the interfacial angle between crystal 16 

planes, a measure of the orientation of crystals was determined (OI Lineal) 17 

(Rodriguez-Navarro et al., 2002). The value of OI Lineal describes the degree of 18 

preferential orientation of crystals, a zero value would be for a sample of randomly 19 

oriented crystals and highly negative value for a sample constituted by highly oriented 20 

crystals. This parameter can be converted to the parameter FWHM which represents 21 

the angular scattering in the orientation of the calcite c-axis (Rodriguez-Navarro et al., 22 

2002). 23 

To give approximate normality and consistency of variances the log of crystal size -80 24 

(log10(crystal size-80)) was taken and used in calculations although the non 25 
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transformed values are presented for the association analysis to allow ease of 1 

interpretation of the size of effects. 2 

Single nucleotide polymorphisms and association analysis. 3 

The SNPs markers used for association analysis were from organic eggshell matrix 4 

candidate genes; ovocleidin-116, osteopontin (SPP1), ovocalyxin-32 (RARRES1), 5 

ovotransferrin (LTF), ovalbumin and ovocalyxin-36 and key genes involved in the 6 

maintenance and function of the shell gland region of the hens oviduct; estrogen 7 

receptor (ESR1) and carbonic anhydrase II (CAII). The position and genotyping were 8 

as described  previously (Dunn et al., 2009). A further 34 SNP markers  were added 9 

from re-sequencing the genome of the population around the ovocleidin-116 region, 10 

(12 SNPs; Chr4: 47.118-47.123,GGoc116nnnnnNN where nnnnn is a code number 11 

and NN represents the 2 possible bases), ovocalyxin-32(RARRES1)  gene (10 SNPs; 12 

Chr9: 23.995-24.045, GGovc32nnnnnNN) and ovalbumin  gene (12 SNPs; chr2 13 

68.905-68.915Mb, GGovalbnnnnnNN). These markers were at gene loci that had 14 

previously shown an association  with egg quality traits (Dunn et al., 2009) and  the 15 

SNP information and allele frequencies have been submitted to dbSNP with submitter 16 

SNP (ss) accession numbers running from ss410759452-ss410759486 . Genotyping 17 

was performed by KBiosciences (Hoddesdon, Herts). Association with crystal size 18 

and orientation was determined by fitting as fixed effects, hatch (h), house (w), and 19 

their interaction and the marker genotypes (g), together with sires (s) and dams within 20 

sires (d) and error (e) as random effects to the responses (y), as  21 

ijklmnmklijiijklmn egwhdsy ++++= .  22 

Linear models were fitted by REML, followed by approximate Student’s t-tests to 23 

assess marker effects. The additive effect of each marker was estimated as half the 24 

difference between homozygote means. 25 
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 1 

Calculations of heritability and genetic correlation  2 

All calculations are based on data from the average of two eggs per bird between 38 3 

and 42 weeks of age.  Heritabilities were estimated from the following model, 4 

Yijkl =  µ + hi + sj +djk + eijkl.     (1) 5 

where  Yijkl is the trait, µ is the overall mean, hi  is the fixed effect of the hatch date, sj 6 

and djk are the random effects of sires and dams within sires and eijkl is the residual, 7 

with variance components 2
sσ , 2

dσ  and 2
eσ , respectively. Model parameters were 8 

estimated by residual maximum likelihood (REML, Patterson and Thompson, 1971), 9 

and heritabilities from the formulae below. Estimates of standard errors were obtained 10 

by the delta method, which approximates the variance of a function using the first 11 

term of its Taylor series expansion about the mean.  12 
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Where y1 is either crystal size or crystal orientation and y2 is an egg trait, and the 21 

omitted additional subscripts ijkl, are the same as in model (1) above. The terms also 22 
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correspond to model (1): µ1/2 is the mean of y1/2, h1/2 is the fixed effect of the hatch 1 

date, s1/2   and d1/2   are the random effects of sires and dams within sires and e1/2 is 2 

the residual.  In addition to the components of random variation for each of the traits, 3 

the three final terms also have covariance terms to model the sire, dam and residual 4 

correlations between the 2 traits. For example, for the sire effects on traits y1 and y2: 5 
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 8 
where 2

1σ  and 2
2σ  are the additive sire genetic variances for traits 1 and 2, and  ρ  is 9 

the (additive) genetic correlation between the traits. Phenotypic correlations were 10 

calculated according to the following equation;  11 
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  12 

The terms are the same as used in the heritability equations except for 2
2/1sσ , 2

2/1dσ  13 

and 2
2/1eσ  which are the sire dam and error covariances of the two traits. Model 14 

parameters were estimated by REML and standard errors for the sire-based genetic 15 

correlation were approximated by the delta method. All calculations were performed 16 

in Genstat version 6.1 (VSN International Ltd, Oxford, UK).  17 

 18 

Results 19 

The results of our calibration experiment (figure 2) demonstrates that there is a good 20 

correlation (r2=0.84) between the estimate of total peak area as determined from the 21 

2D-X-ray diffraction patterns of eggshells (TA) and the estimate of crystal size 22 

obtained using polarised light microscopy of polished sections of the same eggshells. 23 



 11 

Thus the total peak area measured from 2D-XRD analysis of the intact shell provides 1 

a good estimate of the average size of crystals comprising the eggshell. 2 

Using the data from two eggs from 898 hens and the calibration from figure 2 the 3 

mean crystal size for eggs from hens in the population was calculated to be 100.8±0.2 4 

µm (Table 1) but the data is positively skewed with an Anderson Darling (AD) value 5 

of <0.005. The intensities of the peaks were largest in the 104 diffraction ring 6 

(A_104) (Table 1) since the 104 reflection is the strongest for calcite (Rodriguez-7 

Navarro et al., 2007). The estimate of crystal orientation, OI lineal, is normally 8 

distributed (AD = 0.89). 9 

The heritability estimate for crystal size (Table 2) was high, whilst the estimate for 10 

crystal orientation, OI lineal, was moderate (Table 2).  11 

The genetic correlation of crystal size with egg weight, mammillary thickness and 12 

total thickness (Table 3) was at least twice its error, with the correlation with 13 

mammillary thickness being of the largest magnitude (0.65). This was larger than the 14 

correlation with total thickness or effective thickness (combined palisade, and vertical 15 

crystal layers). The genetic correlation of crystal orientation with mammillary 16 

thickness was also larger (0.66) than that observed for the total and effective thickness 17 

measurement (Table 3). There was also evidence that crystal size was genetically 18 

correlated with crystal orientation (Table 3) with animals laying eggs with larger 19 

crystals having a more randomly orientated crystal structure. 20 

For the 2 microstructural traits measured there were 27  SNP markers out of 69 which 21 

had test statistics of additive effects that gave p-values < 0.05. However,  since the 22 

markers in the regions around the genes with dense genotyping are close together 23 

many were in haplotype blocks as determined by haploview (Barrett et al., 2005). 24 

Using this approach we identified  2 markers or marker blocks for crystal size and 3 25 
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for OI lineal out of 24 independent markers or marker blocks that are above the 1 

nominal 0.05 p value. Applying a Bonferroni correction conservatively within this 2 

experiment, assuming independent markers & traits, the probability required would be 3 

≤0.001.  Table 4 shows the SNP with the most significant association in each 4 

haplotype block. The following haplotype blocks were represented by a marker and 5 

contains the markers indicated in brackets; GGovalb1927GC (GGovalb1927GC, 6 

GGovalb1936GA) GGovalb3173CT (GGovalb3173CT, GGovalb4511GA) and are 7 

associated with crystal size. For association with OI lineal the haplotype blocks are 8 

represented by Oc116_310  ( Oc116_310 , GGov1161991GA, GGov1162073CT, 9 

GGov1162344CA, GGov1162611GA, GGov1162644CA GGov1162799CT, 10 

GGov1163981CT) and GGovc321992GA (GGovc321992GA, GGovc32834CT, 11 

GGovc321205GA, GGovc323915CT, GGovc324760GA, GGovc326132GT 12 

GGovc3210051CT).The associations with crystal orientation  had relatively high p 13 

values, in particular the markers linked to Oc116_310 on chromosome 4 and  14 

GGovc321992GA on chromosome 9 (Table 4). When the effect of  substituting the 15 

beneficial allele in the population on the population mean was calculated the effects 16 

are quite small, typically around 1% or less for crystal size although somewhat larger 17 

up to 9.4% for the crystal orientation measurement (Table 4).  18 

 19 

Discussion 20 

It seems self evident that the microstructural characteristics (i.e., size and orientation 21 

of the calcite crystals) of an eggshell are important in terms of its mechanical strength 22 

and indeed this has been alluded to before. (Ahmed et al., 2005, Rodriguez-Navarro, 23 

2007, Rodríguez-Navarro et al., 2006, Rodríguez-Navarro et al., 2000). However the 24 

software applied in this study has only now made it possible to rapidly measure these 25 
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traits in eggshells from  sufficient numbers of animals  to estimate their genetic basis 1 

and to look for correlations with existing measurements of egg shell quality. This new 2 

development  also means that it is now possible for these measurements to be carried 3 

out in an egg testing laboratory on large numbers of eggs given the correct equipment. 4 

 In our study population, the average crystal size was estimated to be 100 µm (Table 5 

1) which is larger than the published estimates of 80µm previously reported for 6 

commercial hybrids (Rodriguez-Navarro et al., 2002). The estimate for crystal 7 

orientation (OI lineal = -0.014; Table 1) which corresponds to a FWHM value of 90 8 

degrees is in the range previously observed in chicken eggshells (FWHM 50 -120 deg; 9 

(Rodriguez-Navarro, 2007, Rodriguez-Navarro et al., 2002). For comparison the 10 

nearly parallel calcite crystals of an ostrich eggshell have a OI_lineal value of -0.606 11 

and a FWHM value of 18 deg (Rodriguez-Navarro, 2007).   12 

A striking aspect of this study has been the observation of a very high value for the 13 

estimate of heritability for crystal size (Table 2). At around 0.6, this is higher than the 14 

measurement for egg colour in brown eggs (Francesch et al., 1997) or egg weight 15 

(0.52) previously reported  for this population (Dunn et al., 2005).  Both egg colour 16 

and egg weight are traditionally considered to be the traits with the highest heritability 17 

estimates in egg layers. The estimate of heritability for the degree of preferred crystal 18 

orientation was somewhat lower at 0.35 although still more than twice the error 19 

estimate. 20 

The Rhode Island Red line used in this study already had a large quantity of detailed 21 

phenotypic data available which allowed us to make genetic correlations with 22 

appropriate traits (Dunn et al., 2009, Dunn et al., 2005). The largest genetic 23 

correlation for both of our microstructural traits was with the mammillary layer 24 

thickness, followed by the total eggshell thickness which includes  the mammillary 25 



 14 

layer.  In contrast, the effective thickness which has the largest contribution to 1 

eggshell strength (Vantoledo et al., 1982, Bain, 1990) was not highly genetically 2 

correlated with  either crystal size or orientation. The genetic correlation of crystal 3 

size and breaking strength was low 0.32±0.28  and positive which is contrary to that 4 

expected from studies of man made polycrystalline materials (Hall, 1951) but in order 5 

to determine if this estimate can be relied upon it will be necessary to repeat our 6 

experiments with a larger sample because of the size of the error. Lastly there is 7 

positive correlation between crystal size and orientation indicating that  bigger 8 

crystals are less regular. This is consistent with stronger shells having a more random 9 

crystal orientation (Rodriguez-Navarro et al., 2002) but interestingly we did not 10 

observe a direct genetic correlation between orientation and breaking strength (Table 11 

3) in our study.  The genetic correlation of crystal size and orientation with egg 12 

production between month 1 and 6 of production  was always negative (-0.4 and – 13 

0.65 respectively) but in all cases this was not significant.   14 

Our results therefore provide strong evidence for a relationship between crystal size or 15 

orientation and the thickness of the shell with particular emphasis on the mammillary 16 

layer. This suggests that the relationship between microstructure and shell strength is 17 

also important as has been hypothesised but this could not be proven. The strong 18 

relationship between microstructure and the thickness of the mammillary layer 19 

nevertheless may have an extremely important consequence if in fact what we are 20 

indirectly measuring is the relationship between the mammillary density, (which is a 21 

result of the number of nucleation sites on the outer shell membrane during the early 22 

stages of shell formation), and the dimensions of the crystal columns which make up 23 

the palisade layer of the shell.  If, for example, the individual mammillae are close 24 

together during shell formation then it seems logical that this would have a limiting  25 
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effect on the width of the crystals in the palisade layer since the latter forms at the 1 

point at which the individual mammillae fuse (Solomon, 1991). The potential 2 

thickness of the mammillary layer would as a consequence also be reduced. If on the 3 

other hand the mammillae are more widely spaced then the width of the crystal in the  4 

palisade layer would be comparatively larger and the mammillary layer thicker. This 5 

concept is represented in figure 3 and is supported by the fact that the columnar 6 

microstructure and the preferential orientation of calcite crystals in eggshells are the 7 

result of a competitive crystal growth process in which crystals emerging from the 8 

mammillary cores compete for the available space such that only those favourably 9 

oriented continue to grow outward forming the columnar units of the palisade layer. 10 

The outcome of this process and resulting material microstructure is thus mainly 11 

defined by the spacing between adjacent crystals units (or the density of the 12 

mammillae ) and the relative growth rate of different crystallographic directions 13 

within a calcite crystal (Rodriguez-Navarro & Garcia-Ruiz, 2000).  14 

It has previously been noted that there is a large phenotypic correlation between 15 

mammillary density and the number of gas exchange pores in the hatching egg 16 

(Tullett, 1975).  It would be interesting to establish if the density of gaseous exchange 17 

pores is also correlated with crystal size. The number and area of apposition between 18 

the mammillae and the contact made between  mammillae and  the shell membranes 19 

also has potential to influence the absorption of calcium by the developing embryo, 20 

since these structures represent the main source of calcium for the developing chick’s 21 

skeleton (Chien et al., 2009).  It could therefore be postulated that crystal size, 22 

perhaps influenced by matrix proteins in the shell, is also critical to this process. Thus, 23 

the importance of both of these factors to the development of the chick embryo and 24 

the magnitude of the genetic component for crystal size presents a potential route to 25 
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improving embryo fitness. In this respect a genetic correlation was found between 1 

crystal size and egg weight (0.44±0.22) but not between crystal orientation and egg 2 

weight (0.09±0.26). It is not obvious how egg weight would be related to crystal size, 3 

although one possibility is that egg size is related in some way to the spacing of 4 

nucleation sites which would be consistent with our model (figure 3). This assumes 5 

that nucleation sites are finite in each bird, determined by a genetically derived 6 

pattern, and if egg size increases these would be further apart, in the manner that an 7 

elastic net expands with the increasing volume of contents but the number of 8 

intersections in the net fabric stays constant. This means that as egg weight and size 9 

increases the spacing between nucleation sites increases and the crystal size increases. 10 

It also implies that the genes responsible for variation in egg size may well underlie 11 

some of the variation in crystal size and shell thickness.  12 

Given these arguments our measurement of crystal size and orientation seems to be 13 

getting close to the basic components of the construction of the eggshell. But it is not 14 

clear what the fundamental biological units are that determine the variability of all 15 

these components, although the proteins involved in crystal nucleation and in the 16 

organic matrix of the shell seem good candidates.  The mammillae are formed during 17 

the  slow phase of mineralisation  which is associated with  the presence of different 18 

organic matrix proteins than the rapid phase which forms the palisade layer (Nys et 19 

al., 2004). With this in mind we attempted to associate crystal size and crystal 20 

orientation with a number of alleles of eggshell matrix proteins and genes known to 21 

be involved in eggshell formation. We found a number of associations which are 22 

highly significant (Table 4) which included many of the markers in haplotype blocks 23 

because of the density in which genotyping was performed.  Markers in the  densely 24 

genotyped loci tested had previously shown association with egg shell quality traits, in 25 
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particular ovocleidin-116 with the total thickness of the shell and RARRES1 with 1 

relative thickness of the mammillary layer (Dunn et al., 2009). The significance of 2 

both markers in the current association study is therefore particularly noteworthy. Of 3 

the proteins previously localised within the mammillary layer of the shell  those seen 4 

in the list of markers for crystal size are ovotransferrin (Gautron et al., 2001) and 5 

ovalbumin (Hincke, 1995).  Ovocleidin-116 and ovocalyxin-32(RARRES1)  are 6 

localised more with the palisade layer and  vertical crystal layer (Hincke et al., 1999) 7 

and both are associated with the measurement of crystal orientation. Ironically the 8 

protein which has been studied most as a catalyst for calcite crystal nucleation in 9 

relation to  egg shell formation, ovocleidin 17 (Freeman et al., 2010), has not been 10 

isolated as an EST nor is it represented in the chicken genome so it has not been 11 

possible to examine the relationship between alleles  for this gene and crystal 12 

formation. This is despite its appearance in proteomic studies (Mann et al., 2006) 13 

Although the effects of each marker on the trait mean values are relatively small, each 14 

is of sufficient size to merit further validation as tools for selection of sires and 15 

possibly dams to improve eggshell quality in pedigree poultry breeding programmes. 16 

Small increases in shell quality traits can have large effects on the product quality and 17 

further work may lead us to understand the importance of these markers on 18 

mammillary layer formation and what effect this may have for the developing 19 

embryo. 20 

In conclusion, we believe that these measurements bring us closer to reducing 21 

eggshell quality to its component parts which will improve our understanding of 22 

eggshell quality and safety and the precision of how we define it.  Ultimately this 23 

contributes to our goal of improvement of egg shell quality through genetic selection.  24 

 25 
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80µm 149µm

 1 

Figure 1. The effect of crystal size on the X-ray diffraction pattern of  egg shell 2 
samples with average crystal sizes of 80 and 149um estimated from by cross polarised 3 
light microscopy (figure 2) . The number of spots decreases and their 4 
intensity and size increases as crystal size increases. 5 
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Figure 2. Graph of the relationship between average crystal size determined by cross 2 
polarised light microscopy and the total peak area (TA) estimate by X-ray diffraction 3 
of 10 individual egg shells from a pedigree Rhode Island Red population. The line is 4 
fitted using linear regression and the dashed lines represent 95% confidence 5 
intervals. 6 

7 



 23 

Trait   Mean ± SD   1 
Values for mean intensity of  individual crystal orientations  2 
A_104  4371±782   3 
A_108   833±116  4 
A_110  1000±154   5 
A_113  916±127   6 
A_202   1215±185   7 
Overall mean intensity    8 
TA  8336±1231   9 
Crystal size calculated from calibration of TA   10 
Crystal size (um)  100.8±6.5   11 
Crystal orientation  12 
OI lineal  -0.014±0.003  13 

 14 
Table 1. Summary statistics for the estimates of the average intensities of peaks 15 
along the Debye-Scherrer ring associated with the most important hkl calcite 16 
reflections (A_104, 110, 113, 202, 108) their sum, the total peak area (TA) and the  17 
average crystal size determined by calibration from cross polarised light 18 
microscopy using the equation in figure 1.  The estimate of preferred crystal 19 
orientation is represented by OI lineal where a value of 0 represents a completely 20 
random orientation with increasingly negative values representing a more 21 
orientated crystal structure. The shells of two eggs laid by 898 pedigree Rhode 22 
Island Red hens aged between 38 and 42 weeks were used  for the estimates. 23 

24 
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Trait             Sire  Dam  Sire+Dam 1 
    estimate  estimate  estimate 2 
A_104    0.51±0.15 0.55±0.13 0.53±0.09 3 
A_110    0.45±0.19 0.55±0.13 0.50±0.08 4 
A_113    0.57±0.17 0.44±0.12 0.51±0.09 5 
A_202    0.43±0.14 0.43±0.13 0.43±0.08 6 
A_108    0.54±0.17 0.55±0.13 0.55±0.09 7 
crystal size   0.60±0.18 0.62±0.13 0.61±0.09 8 
OI lineal= crystal orientation 0.35±0.13 0.39±0.13 0.37±0.08 9 
 10 
Table 2. Estimates of heritability ± standard error for the average intensities of peaks 11 
along the Debye-Scherrer ring associated with the most important hkl calcite 12 
reflections (104, 110, 113, 202, 108). These were then summed to provide the total 13 
average intensity (TA), which was converted to calcite crystal size using the equation 14 
in figure 1. The heritability estimates associated with that value are presented and the 15 
estimate of  OI lineal which is a measure of crystal orientation. 16 
 17 

18 
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  Correlation of:  Crystal size  Crystal orientation 1 
with Genetic  Phenotypic Genetic  Phenotypic 2 

  Egg weight and shape   3 
Egg Weight 0.45±0.21 0.13 0.09±0.26 0.10 4 
Quasi-static measurements   5 
Breaking strength (equatorial) 0.32±0.28 0.08 -0.08±0.33 -0.07 6 
SEM  thickness measurements   7 
Mean thickness 0.42±0.22 0.20 0.51±0.25 -0.02 8 

  Mean effective thickness 0.32±0.24 0.15 0.40±0.27 -0.05 9 
Mean mammillary thickness 0.61±0.20 0.24 0.66±0.24 -0.10 10 
Crystal size   11 
Crystal Size    0.45±0.21 0.23 12 
 13 

Table 3. Estimates of genetic correlation (± error) and phenotypic correlation  14 
between crystal size or crystal orientation and measurements of egg weight, egg 15 
quality and shape, breaking strength, static and dynamic stiffness  and egg shell 16 
thickness measurements derived by scanning electron microscopy (SEM)  . 17 

18 
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 1 

Marker Geno1 Trait 2 Size of 3  p4 Effect5  MAF6  Selection7 2 
  type mean  additive   as a %   effect  3 
   effect±SE   of SD  (% change) 4 

Trait Crystal size          5 
GGovalb1927GC  1 101.7 0.87±0.37 0.018 13 42 0.7 6 
 2 100.0      7 
 3 101.5      8 
Ovotrans 1 97.6 -1.70±0.75 0.026 -26 31 0.8 9 
 2 100.97      10 
 3 99.8      11 
Trait  OI lineal        12 
Oc116310poly  1 -0.0132 0.0006±0.0002 0.001 31 46 5.6 13 
 2 -0.0144      14 
 3 -0.0135      15 
GGovc321992GA  1 -0.0133 0.0007±0.0003 0.004 40 23 9.4 16 
 2 -0.0148      17 
 3 -0.0137      18 

 19 
Table 4. The most significant representatives of the marker haplotypes associated 20 
with crystal size and crystal orientation are listed with  the estimated size of the 21 
additive effect and its error and its  size relative to the trait standard deviation. 22 
1Genotypes represented by the SNP where 1 and 2 are homozygotes and 3 is the 23 
heterozygote; 2Trait means from the full-sib model given in the methods section. 3Size 24 
of the additive effect, (AA-aa)/2. 4Probability from full-sib model,  5Effect as % of the 25 
SD calculated from the sum of the sire and dam genetic and the environmental 26 
variances after fitting the nuisance effects of house and hatch. 6Minimum allele 27 
frequency. 7An estimate is given of the expected increase in the trait mean if the 28 
beneficial allele was selected for in the population  29 
 30 

 31 
32 
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Figure 3 Model of how crystal size may be related to the thickness of the mammillary 2 
layer and in turn the thickness of the shell. 3 
 4 
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