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[1] Long‐term records of Greenland outlet‐glacier change
extending beyond the satellite era can inform future
predictions of Greenland Ice Sheet behavior. Of particular
relevance is elucidating the Greenland Ice Sheet’s response to
decadal‐ and centennial‐scale climate change. Here, we
reconstruct the early Holocene history of Jakobshavn Isbræ,
Greenland’s largest outlet glacier, using 10Be surface exposure
ages and 14C‐dated lake sediments. Our chronology of ice‐
margin change demonstrates that Jakobshavn Isbræ advanced
to deposit moraines in response to abrupt cooling recorded in
central Greenland ice cores ca. 8,200 and 9,300 years ago.
While the rapid, dynamically aided retreat of many Greenland
outlet glaciers in response to warming is well documented,
these results indicate that marine‐terminating outlet glaciers
are also able to respond quickly to cooling. We suggest that
short lag times of high ice flux margins enable a greater
magnitude response of marine‐terminating outlets to abrupt
climate change compared to their land‐terminating
counterparts. Citation: Young, N. E., J. P. Briner, Y. Axford,
B. Csatho, G. S. Babonis, D. H. Rood, and R. C. Finkel (2011),
Response of a marine‐terminating Greenland outlet glacier to abrupt
cooling 8200 and 9300 years ago, Geophys. Res. Lett., 38, L24701,
doi:10.1029/2011GL049639.

1. Introduction

[2] Fast‐flowing outlet glaciers disproportionately influ-
ence the overall mass balance of ice sheets [Joughin et al.,
2004; Rignot and Kanagaratnam, 2006]. Satellite‐based
observations show that outlets of the Greenland Ice Sheet
(GrIS) fluctuate rapidly on sub‐decadal time scales and
highlight the importance of non‐climatic (dynamic) processes
in dictating outlet‐glacier behavior [Howat et al., 2007; Nick
et al., 2009]. The relatively short period over which detailed
ice‐sheet observations have been made, however, has made it
difficult to assess the interaction between dynamic and cli-
matic controls on GrIS change and what role these mechan-

isms play in the GrIS’ response to abrupt climate change.
Paleo‐records of GrIS change extending through the Holo-
cene epoch (the past ∼11.7 thousand years (kyr) [Walker
et al., 2009]) can place empirical constraints on the timing
and magnitude of ice‐sheet response to temperature change
over timescales longer than those dominated by dynamics,
and are key to reducing uncertainties about projections of
future ice‐sheet retreat and sea‐level rise.
[3] Abrupt isotope excursions in Greenland ice cores ca.

8,200 and 9,300 years ago record the most prominent abrupt
climatic events of the past 10,000 years [Alley et al., 1997;
Kobashi et al., 2007; Rasmussen et al., 2007], likely driven
by freshwater outbursts into the North Atlantic Ocean and
attendant changes in thermohaline circulation [Barber et al.,
1999; Yu et al., 2010]. The 8,200‐year event resulted in an
estimated drop in annual temperatures of 3.3 ± 1.1°C in
Greenland [Kobashi et al., 2007]; similar in amplitude but
shorter in duration is the 9,300‐year event [Rasmussen et al.,
2007]. These proxy records from central Greenland ice cores
provide type chronozones for the 8.2 and 9.3 kyr abrupt
cooling events, which appear to have influenced climate far
beyond Greenland [e.g., Haug et al., 2001; Alley and
Áugústdóttir, 2005; Fleitmann et al., 2008], yet remark-
ably there is no definitive evidence indicating that these
perturbations influenced GrIS behavior. These events afford
an ideal opportunity to assess the sensitivity of the GrIS to
short‐lived climate change as early Holocene abrupt cooling
interrupted climatic baseline conditions that were similar to
today [Alley and Áugústdóttir, 2005]. Here, we develop a
precise glacial chronology for Jakobshavn Isbræ to discern
the response, if any, of this major marine‐terminating outlet
glacier to abrupt climate change.

2. West Greenland and Jakobshavn Isfjord

[4] The Fjord Stade moraine complex located throughout
west‐central Greenland consists of the older Marrait and
younger Tasiussaq moraines (Figure 1) [Weidick, 1968;
Weidick and Bennike, 2007]. It has been hypothesized that
Fjord Stade moraine deposition was the result of a climati-
cally driven standstill or advance of the western GrIS during
overall deglaciation, perhaps related to the 8.2 kyr cooling
event [Long and Roberts, 2002]. Dynamics related to topo-
graphic controls on ice‐sheet position, rather than changes
in mass balance, have also been proposed as the cause of
moraine deposition [Long et al., 2006]. Bracketing radio-
carbon ages broadly constrain deposition of the Fjord
Stade moraine complex to sometime between ∼10 and 7.9 kyr
ago [Weidick, 1968; Long and Roberts, 2002; Long et al.,
2006; Weidick and Bennike, 2007]. At Jakobshavn Isfjord
(Figure 1), recent 10Be surface exposure ages (herein 10Be
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ages), calculated with the northeast North America produc-
tion rate [Balco et al., 2009; Briner et al., 2011] (see auxiliary
material), indicate that the fjordmouth initially deglaciated
∼10.2 kyr ago and deglaciation from the Tasiussaq moraine
was underway by ∼8.0 kyr ago [Young et al., 2011], consis-
tent with bracketing radiocarbon ages [Briner et al., 2011].1

These ages suggest possible correlations with abrupt climate
changes in the early Holocene, but the Fjord Stade moraines
remain imprecisely dated and therefore their climatic signif-
icance remains debated [Long and Roberts, 2002; Long et al.,
2006; Weidick and Bennike, 2007; Young et al., 2011]. Here
we directly date both the Tasiussaq and Marrait moraines for
the first time using 10Be ages and 14C‐dated lake sediments.

3. Methods and Results

[5] We sampled large boulders resting on the Tasiussaq
moraine at Jakobshavn Isfjord (Figure 1). Individual 10Be
ages are shown in Figure 1 with 1s analytical uncertainties

and in Tables S1 and S2. 10Be ages from Tasiussaq moraine
boulders range from 8.4 ± 0.2 to 8.0 ± 0.2 kyr (n = 6;
reduced c2 = 0.86), and have a mean exposure age of 8.2 ±
0.4 kyr (error term includes production rate uncertainty).
10Be ages derived from bedrock and erratic boulders [n = 5,
excluding one outlier] located just inboard of the Tasiussaq
moraine average 8.0 ± 0.4 kyr (reduced c2 = 0.43 [Young
et al., 2011]). These 10Be ages further constrain the timing
of retreat from the Tasiussaq moraine, supporting the 8.2 kyr
age of the moraine.
[6] The Marrait moraine contained no boulders suitable for

10Be dating in our field area. To constrain the age of the
Marrait moraine, we collected sediment cores from Pluto
Lake (informal name; Figures 1 and 2), a threshold lake [e.g.,
Briner et al., 2010] located directly outboard of the Marrait
moraine on the south side of Jakobshavn Isfjord. Pluto Lake
is currently dominated by organic sedimentation; however,
during emplacement of the Marrait moraine Jakobshavn
Isbræ spilled silt‐laden meltwater into Pluto Lake, leading to
alternating units of organic‐ (Figure 2, units I and III) and
minerogenic‐rich sediment (unit II) whose sharp contacts we
dated with radiocarbon. The lower organic unit (III) indicates
that following initial deglaciation ∼10.2 ± 0.5 kyr ago [Young
et al., 2011] (see auxiliary material), Jakobshavn Isbræ did
not spill silt‐laden meltwater into Pluto Lake until emplace-
ment of the Marrait moraine. Two radiocarbon ages from

Figure 1. Study area on west Greenland. (a) Latitudinal
extent of the Fjord Stade moraines on west Greenland
[Weidick, 1968; Funder et al., 2011] and the location of
Disko Bugt (arrow). (b) Disko Bugt region with generalized
Fjord Stade moraines [Weidick, 1968]; following a last glacial
maximum position on the continental shelf, Jakobshavn Isbræ
retreated through Disko Bugt by ca. 10.3 kyr ago [Lloyd et al.,
2005] before depositing the Fjord Stade moraines between
ca. 10 – 7.9 kyr ago. (c) Marrait (red lines) and Tassiusaq
(white lines) moraines at Jakobshavn Isfjord [Weidick, 1968;
Young et al., 2011]. 10Be ages are presented in kyr at 1s and in
four distinct morphostratigraphic groups: 1) outboard of the
Fjord Stade moraines (red), 2) inboard of the Marrait moraine
(black), 3) Tasiussaq moraine boulders (green), and 4) directly
inboard of the Tasiussaq moraine (orange).

1Auxiliary materials are available in the HTML. doi:10.1029/
2011GL049639.

Figure 2. Lithostratigraphy of four sediment cores recov-
ered from Pluto Lake with 14C ages (cal yr BP; 2s). LOI ‐ loss
on ignition; MS ‐ magnetic susceptibility. Detailed radio-
carbon information can be found in Table S3. Photograph
of Pluto Lake shown in Figure S4.
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macrofossils immediately below the thick minerogenic unit
are 9,190 ± 100 and 9,140 ± 110 cal yr BP and provide
maximum‐limiting ages for moraine deposition. Two radio-
carbon ages from just above the minerogenic unit (minimum
ages) are 9,210 ± 80 and 9,150 ± 120 cal yr BP. Because all
radiocarbon ages overlap at 1s, we calculate a mean radio-
carbon age of 9,175 ± 45 cal yr BP. Consistent with these
radiocarbon ages are two 10Be ages from ice‐sculpted bedrock
of 8.9 ± 0.2 and 9.1 ± 0.2 kyr from just inboard of the Marrait
moraine north of Jakobshavn Isfjord (Figure 1). 10Be ages
from this surface must be equal to or slightly younger than the
age of the Marrait moraine as constrained by the Pluto Lake
radiocarbon ages. All maximum‐ and minimum‐constraining
radiocarbon and 10Be ages overlap at 1s indicating nearly
instantaneous (i.e., sub‐centennial; within dating resolution)
deposition of the Marrait moraine ∼9.2 kyr ago.

4. Discussion

[7] Taken together, these 10Be and radiocarbon ages,
combined with published 10Be ages [Young et al., 2011],
indicate that the Tasiussaq and Marrait moraines record
advances of Jakobshavn Isbræ in response to abrupt cooling
occurring 8.2 and 9.3 kyr ago (Figure 3). Our results reveal
that these moraines appear to record changes in GrIS mass
balance, although the exact location and preservation of the
Fjord Stade moraines at Jakobshavn Isfjord also may be

influenced by topography. Pluto Lake’s alternating organic‐
and minerogenic‐rich sediment stratigraphy, and the onlap
of the Tasiussaq moraine onto the Marrait moraine in some
locations (Figure 1 and Figure S1 in the auxiliary material),
indicate that both moraines represent readvances rather
than standstills of the ice margin. Although glaciological
conditions also can trigger short‐lived advances of marine‐
terminating outlet glaciers, our chronology suggests that
abrupt coolings, rather than glaciological conditions, drove
advances of Jakobshavn Isbræ during the early Holocene.
[8] This precise chronology has implications regarding the

response of marine‐terminating outlet glaciers to abrupt cli-
mate change. It has been proposed, based upon paleo‐records
and modern observations, that the growth of ice sheets and
their outlets may be much slower than their decay, which is
linked to dynamically forced positive feedbacks involving
the interaction of the calving terminus with fjord bathyme-
try, interior drainage and oceanographic changes [Joughin
et al., 2004; Holland et al., 2008; Briner et al., 2009;
Rignot et al., 2010]. In contrast, the coincidence of the age of
the Fjord Stade moraines with the 8.2 and 9.3 kyr cooling
events implies a rapid response of Jakobshavn Isbrae to
decades‐ to centuries‐long cold events. It seems that abrupt
climate cooling can drive rapid advances ofGrIS outlet glaciers
with lag times perhaps similar to high mass‐balance‐gradient
alpine glaciers [e.g., Oerlemans, 2005]. Although fresh mor-
aines that fringe the current GrIS, including Jakobshavn Isbræ,
record a response of the ice sheet to the Little IceAge (LIA; i.e.,
a centennial‐scale event), prior to the LIA, the GrIS had
already been advancing for several thousand years in response
to long‐term Neoglacial cooling [Kelly, 1980; Funder et al.,
2011]. Consequently, LIA moraines were deposited at the
culmination of long‐term cooling and GrIS advance. In con-
trast, during the early Holocene, Jakobshavn Isbræ was in
retreat following its last glacial maximum position on the
western Greenland continental shelf [Weidick and Bennike,
2007; Funder et al., 2011]. Thus, the 8.2 and 9.3 kyr event‐
driven advances of Jakobshavn Isbræ reversed a pattern of
overall retreat. In summary, Jakobshavn Isbræ experienced
quick retreat during the early Holocene that was punctuated by
readvances ∼9.2 and 8.2 kyr ago.
[9] Jakobshavn Isbræ and other marine‐terminating outlet

glaciers are characterized by ice velocities on the order of sev-
eral km yr−1 [Joughin et al., 2004; Rignot and Kanagaratnam,
2006] and modern observations show that Jakobshavn Isbræ
displays enhanced sensitivity to regional warming compared
to the adjacent land‐based margin [Csatho et al., 2008]. We
suggest that this relationship also applies to phases of outlet‐
glacier growth. For example, in addition to Jakobshavn
Isbræ’s quick response to early Holocene abrupt cooling,
Jakobshavn Isbræ was also much more extended than the
adjacent land‐based margin during the LIA [Weidick, 1994;
Csatho et al., 2008].We speculate that ice‐sheet margins with
high ice fluxes display an amplified response to cooling due to
much quicker response times than margins with lower ice
fluxes. In these high ice flux sectors of the ice sheet, a mass
balance shift from negative to positive would be relayed
quickly to the margin resulting in an ice‐sheet advance.

5. Conclusions

[10] Currently the GrIS is experiencing rapid retreat
and accelerated rates of ice loss [Rignot et al., 2011]

Figure 3. 10Be and radiocarbon ages constraining the Fjord
Stade moraines at Jakobshavn Isfjord. We present individual
10Be ages with 1s analytical uncertainties and the mean 10Be
age of each morphostratigraphic group with a 10Be production
rate uncertainty of ∼5% (bullseyes). Colorway is from Figure 1.
Maximum‐ (left pointing arrows) and minimum‐constraining
(right pointing arrows) radiocarbon ages are from Pluto Lake.
Fifty years has been added to each radiocarbon age to make
them compatible with the ice‐core chronology (before AD
2000; b2k). Also depicted is the mean radiocarbon age from
Pluto Lake (diamond) constrainingMarrait moraine deposition
to 9,225±45 b2k. 10Be ages constraining the Marrait moraine
are located inboard of themoraine andmust be younger than the
radiocarbon constraints. Results compared to d18O values from
the North Greenland Ice Core Project (NGRIP) ice core
[Rasmussen et al., 2007] and methane concentrations from the
Greenland Ice Sheet Project Two (GISP2) ice core [Kobashi
et al., 2007, and references therein].
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influenced by dynamic fluctuations in marine‐terminating
outlet glaciers, and there is increasing concern that these
changes may become irreversible at outlets whose beds sit
well below sea level [Intergovernmental Panel on Climate
Change, 2007; Pfeffer, 2007]. Our data suggest that dynam-
ically forced ice‐margin retreat is not necessarily irreversible
[O’Cofaigh et al., 2008]; Jakobshavn Isbræ overcame rapid
retreat twice in the early Holocene in response to centennial‐
scale cooling events. At the same time, these results reinforce
the notion that high‐ice‐flux outlet glaciers are extremely
sensitive to climate change, both warming and cooling, with
ice extent having responded rapidly to climate change in the
past. As temperatures in the Arctic are expected to continue to
increase over the next century, GrIS outlets will likely continue
to retreat as evident by the close coupling between temperature
and ice‐margin change presented here. Ice‐margin retreat
initially may be largest for marine‐based outlets and ice‐sheet
sectors whose beds are below sea level far inland. However,
should warming be reversed or punctuated by a significant
cooling episode, widespread retreat could be halted.
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