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Abstract 

Thin HfO2 films grown on the lightly oxidised surface of (100) Si wafers have been 

examined using dark-field transmission electron microscopy and selected area 

electron diffraction in plan view.  The polycrystalline film has a grain size of the 

order of 100 nm and many of the grains show evidence of twinning on (110) and (001) 

planes.  Diffraction studies showed that the film had a strong [110] out-of-plane 

texture, and that a tiny volume fraction of a metastable (possibly tetragonal) phase 

was retained.  The reasons for the texture, twinning and the retention of the 

metastable phase are discussed. 

 

 



Introduction 

 It is well known that replacements to Si(O,N) – based dielectrics need to be 

found to enable further miniaturisation of MOSFETs and HfO2-based materials have 

already been demonstrated for this application by major manufacturers.  Whilst an 

amorphous film would be ideal, in reality, such HfO2 films will always crystallise 

during the rapid thermal annealing processes applied to silicon wafers and thus it is 

important to understand the structures formed in the crystallisation of these films 

since they may well influence the properties1-5.  The present work investigates 

crystallographic texture in such films, how this results in the frequent appearance of 

multiple twinning in the films, together with evidence for the retention of a small 

fraction of some metastable tetragonal/cubic/orthorhombic phase in the films.  The 

reasons for the twinning are discussed and simple models are presented to explain the 

texture and the resultant twinning in the films. 

 

Experimental 

 (100) Si wafers were prepared by cleaning with dilute HF, oxidising with an 

O3/deionised water solution to form 1.0 nm of native SiO2.  HfO2 was then deposited 

using 80 cycles of atomic layer deposition (ALD) using HfCl4/H2O at 300°C to 

produce a target film thickness of 3.5-4.0 nm.  Cross sectional studies of films 

prepared in the same way show thicknesses of about 3.5 nm6.  The wafers were then 

subjected to a post-deposition furnace anneal under an O2 atmosphere at 500°C for 1 

minute resulting in crystallisation to polycrystalline HfO2 (loaded at 400°C, heated to 

500°C in about 30s, held for 1 minute, and cooled again to 400°C in about 1 minute, 

followed by further cooling under N2).  Some samples were prepared using further 

deposition of amorphous-Si onto the HfO2 film followed by annealing to produce a 



poly-Si gate, but very similar results were seen to those for bare HfO2 films and only 

these bare annealed HfO2 films without the rest of the gate stack deposited on top will 

be discussed in this paper. 

 Preparation of plan-view TEM specimens was performed using conventional 

techniques of grinding, cutting 3 mm discs, polishing, dimpling and finally ion-

milling to perforation.  All material removal was performed from the substrate side to 

leave the HfO2 film intact and easily visible close to the hole, but all regions 

examined had some supporting Si substrate remaining below the ultrathin HfO2 film.  

Investigations of the nanoscale structure were performed using conventional dark-

field imaging (to allow imaging of the film alone without the strong diffraction 

contrast of the silicon substrate) combined with selected area diffraction using FEI 

Tecnai TF20 and T20 transmission electron microscopes (FEI Corp., Eindhoven, The 

Netherlands); images and diffraction patterns were recorded either using conventional 

negative film, a Gatan MSC Camera (Gatan Inc., Pleasanton, CA) or an Olympus SIS 

Megaview III CCD camera (Olympus SIS GmbH, Garching, Germany).  Diffraction 

patterns were modelled using Desktop Microscopist (Lacuna Laboratories, formerly 

of Beaverton, OR). 

 

Note on structures and twinning in HfO2 

HfO2 is known to display monoclinic, tetragonal and cubic structures at 

ambient pressure, analogous to the well-known fluorite or fluorite-derived structures 

in ZrO2
7; additionally two orthorhombic modifications are known to exist under high 

pressure conditions8.  At temperatures lower than 1800°C the stable structure is 

monoclinic with lattice parameters of a ~ 5.12 Å, b ~ 5.17 Å, c ~ 5.29 Å and β ~ 99.2° 

(space group P21/c); this structure is well studied and numerous refinements exist7,8,10.  



At temperatures of 1800-2400°C, however, it takes the form of a tetragonally 

distorted fluorite structure, analogous to tetragonal zirconia (space group P42/nmc)7.  

Unfortunately, the tetragonal structure is less well studied and fewer refined structures 

are available, so calculating the structure is most easily performed by using atom 

positions refined for tetragonal ZrO2 (see for example Teufer11) together with cell 

parameters determined for HfO2
7.  For simplicity of comparing the phases, the 

tetragonal phase is expressed in terms of the face-centred cell used by Wang et al.7 in 

his comparison tables rather than the primitive cell, and parameters of a ≈ 5.15 Å and 

c ≈ 5.29 Å were given for the face-centred cell (measured at ~1800 °C). 

Although the monoclinic phase is the thermodynamically stable phase at room 

temperature, there have been numerous reports of metastable phases existing in thin 

films or nanoparticles of HfO2 including of tetragonal, cubic and orthorhombic 

phases2,4,12-15.  In most cases, it was difficult to unambiguously determine which of 

these phases was present since the main diffraction peak common to all these phases 

lies at a similar d-spacing around 2.90-2.95 Å (which indexes as 111cubic, 111face-centred-

tetragonal or 211orthorhombic) and sits between the 111 monoclinic and 111monoclinic diffraction 

rings at d spacings of ~ 3.15 Å and 2.82 Å, respectively.  For simplicity in performing 

the calculations done in this paper, we assume that the metastable phase was 

tetragonal in accordance with Triyoso et al.2, but it was not possible to 

unambiguously determine its structure using electron diffraction for the reasons noted 

later. 

Twinning occurs in a crystal where the stacking of atomic planes changes 

order or direction at a specific plane, the twin is formally described by a mirror 

operation on this plane or a 2-fold rotation perpendicular to this plane.  Twinning can 

occur in a structure as a consequence of a phase transformation when a mirror 



symmetry plane of the parent structure is lost as a consequence of the transformation; 

this lost mirror plane can become a twin plane in the low symmetry structure.   (The 

reader is referred to a wider discussion of the formation of domain boundaries due to 

symmetry reduction in phase transformations by Van Tendeloo and Amelinckx16).  

When HfO2 (or ZrO2) transforms from the high symmetry cubic or tetragonal phase 

into the low symmetry monoclinic phase some mirror or mirror-glide elements are 

lost.  The P42/nmc tetragonal structure contains mirror planes on (100)/(010), (001) 

together with mirror-glide planes on (110)/( 011 ).  The only one retained in any form 

by the P21/c monoclinic structure is a c-glide plane on (010)monoclinic.  Assuming that 

the tetragonal-monoclinic transformation happens with [001] parallel in both phases 

(since this axis is much longer than the other axes in either structure), and with [110] 

of the primitive tetragonal becoming [100] of the monoclinic phase, then the lost 

mirror planes expressed in the monoclinic indices will be (100), (110)/( 011 ) and 

(001).  These will become possible twin planes of the structure and all of these 

twinning modes have previously been observed in ZrO2 and/or HfO2
12,17,18 

 

Results and Analysis 

 A typical dark-field image of the structure in the specimen is shown in Fig. 1 

(using an objective aperture placed to exclude all contributions from the silicon 

substrate but to allow several different HfO2 reflections including the 111, 111  and 

110/011 rings labelled in Figure 2a to contribute to the image).  This clearly shows the 

polycrystalline nature of the film and it is also clear that most grains appear to be in 

the size range of 50 – 200 nm, which accords well with previous observations by plan 

view TEM at IMEC19 and using AFM by Triyoso et al.2.  Please note that such plan-

view grain size estimations are likely to be more representative than those made using 



many other methods including cross-sectional TEM where the irregular shape of 

grains may give misleading results20 or by X-ray Scherrer broadening, where internal 

twinning of the monoclinic phase may just give a measurement of the size of the 

internal twins.  Many grains are also found with a striped appearance and these are 

investigated further below.  Selected area diffraction from such large areas gives ring 

patterns as shown on the left hand half of Figure 2 (slightly tilted away from the 

substrate [001] normal direction to reduce the intensity of the silicon diffraction spots).  

Since silicon reflections are always found superimposed on the diffraction patterns, 

the ring patterns from the HfO2 film could be accurately calibrated and the plane 

spacings mainly accord with the monoclinic crystal structure, which is normally stable 

at room temperature.  Nevertheless, several spots are observed in a ring between the 

111  and 111 rings (see the inset in Fig. 2); these cannot arise from the monoclinic 

phase and correspond, rather, to a reflection from one of the other forms of HfO2 

(111cubic, 111tetragonal and 211orthorhombic).  Thus, a small volume fraction of the 

metastable phase is clearly present in the film, but the number of these spots 

compared to 111 /111 reflections from the monoclinic phase is so small that it seems 

unlikely that there is even a 1% volume fraction of metastable phase remaining.  The 

right hand half of Figure 2 shows a selected area diffraction pattern of the same area 

with the sample tilted to an angle of 45° away from the substrate normal.  Comparing 

this with the zero tilt diffraction pattern, a number of observations are clear.  Along 

the tilt axis, little change has occurred, as one would expect.  However, perpendicular 

to this axis, the 111  and 111 rings are weakened and the 200/020/002 ring just 

outside these is significantly more intense (even if the reflections in this ring are 

rather diffuse and not well separated due to the tiny thickness of the film); the 

consequences of this for film texturing will be discussed in section III. 



Figure 3a shows a higher magnification dark-field image of one striped grain, 

using a dark-field tilt such that only spot a from the closely spaced pair of spots a and 

b in the selected area diffraction pattern of Figure 3c contributes to the image.  

Similarly, Figure 3b was formed using a dark-field tilt such that only spot b from the 

pair contributes to the image.  Thus, it is clear that the stripe contrast comes from a 

pair of closely spaced diffraction spots, probably arising from twinning.  Similarly, 

closely-spaced diffraction spots were found in all cases where striped grains were 

investigated in detail.  Based on their lattice spacing these closely spaced spots in 

Figure 3c could be identified as either 022 (d = 1.838 Å) or 221  (d = 1.851 Å) type 

reflections.  The angle between the spots, together with the angle of these spots in the 

diffraction pattern to the twin plane in the image (after compensation for the rotation 

of the diffraction pattern with respect to the image), were used to identify the twin 

relationship by comparison with simulations.  Diffraction patterns were simulated for 

(100), (001) and (110) twin relationships, but only (110) twinning could explain the 

diffraction pattern; a modelled diffraction pattern is shown in Figure 3d.  It may be 

noted that bright diffraction contrast only occurs over a limited area of the grain in 

either of Figs 3a or 3b due to specimen bending, as is often the case in thin TEM 

specimens. 

Figure 4a shows a dark-field image of a grain showing stripe patterns in two 

orthogonal directions.  A selected area diffraction pattern from this grain is shown in 

Figure 4b.  Since the distortion from face-centred-cubic (FCC) is still relatively small, 

this pattern still resembles a <110> FCC diffraction pattern, but having a cross shape 

of four separate reflections at each {111} position.  Also for the reflections from {002} 

planes (top and bottom) there is an arc of three reflections.  Modelling of the effect of 

the different twinning modes on the [110] diffraction show that ( 011 ) twinning 



would produce a spot splitting of the {111} spots in a horizontal direction.  In contrast 

to this, (100) and (001) twinning cause splitting of {111} spots in the vertical 

direction.  Thus, the diffraction pattern shows that two twinning modes are involved 

and modelling diffraction patterns shows a better match for a combination of (110) 

twinning and (001) twinning in the same grain.  This is illustrated in the modelled 

diffraction pattern of Figure 4c where the red and blue triangles (horizontal splitting) 

represent contributions from the (110) twinning and the green and brown squares 

(vertical splitting) show contributions from the (001) twinning.  This type of multiple 

twinning resulting in cross shaped spots on [110] diffraction patterns seems to be a 

common feature of the films and has frequently been observed in the different 

specimens studied in this project. 

Figure 5a shows a selected area diffraction pattern from one grain where a 

111metastable spot is observed between the 111m and 111 m spots from a grain that has 

undergone (001) twinning.  A variety of dark field images were then formed with 

different tilts of the beam with respect to the objective aperture in order to create 

images from specific diffraction spots only.  Note that the spots were very closely 

spaced so that it would be impossible to just form an image with the 111metastable spot 

alone.  Three images of these images were then combined to form a three-colour RGB 

image as follows: 

i) The 111monoclinic and 111metastable spots – red channel 

ii) The 111 monoclinic and 111metastable spots – green channel 

iii) The 111 monoclinic spot alone – blue channel 

The results are shown in Figure 5b and areas just showing red or showing a green-

blue mix (cyan) must be monoclinic (and this highlights the twinning very well), but 

the area at the top of the grain showing a red-green mix can only be diffracting into 



the 111metastable spot and is thus confirmed as the metastable phase.  Solid colour areas 

in blue and red to the lower right are monoclinic.  Please note it was not possible to 

directly determine the structure of the metastable phase using diffraction since 

extended exposure to an intense electron beam often resulted in the transformation to 

the monoclinic phase (probably as a consequence of local heating or electron beam 

induced mobility). 

 

Discussion 

At low tilts from the substrate normal there is strong diffracted intensity for 

111 and 111  type reflections, together with some significant intensity on 110/011 and 

220/022 reflections, as shown in Figures 2a and 4b.  When the sample is tilted to ~ 

45° off-axis the 111 and 111  are weakened whereas the 200/020/002 ring is 

strengthened (from being almost invisible at low tilts).  This suggests an average film 

texture in which many {111} and { 111 } planes lie perpendicular to the film plane, 

but that there are a lot of (200)/(020)/(002) planes lying at 45° to the film plane.  If the 

pattern of Fig. 4b was in any way representative, and this pattern was frequently 

observed at different locations and in different samples, then the out of plane direction 

is [110].  This would also explain the strength of the 111 and 111  rings at low tilts, as 

well as the relative weakness of the 200/020/002 rings since the 200 and 020 

reciprocal lattice directions will lie out of plane and only 002 will lie in plane.  Now 

since the monoclinic cell of hafnia is a basically a distorted cubic cell, if the [110] 

direction lies out of plane, then the (200) and (020) planes will lie at approximately 

45° to the plane, which would explain the increased diffracted intensity to the 200/020 

ring at such tilts.    Thus, there is strong evidence from the diffraction data that the 

film shows a clear [110] out-of-plane texture.  This observation accords well with that 



of Bohra et al.4 who also noted a [110] out-of-plane texture in 2 nm HfO2 films that 

displayed a metastable orthorhombic or cubic phase. 

It should be noted that the texture is a clear out-of-plane texture and there is no 

in-plane texture, as would be expected since the HfO2 is not epitaxially grown on the 

Si but grows on a thin layer of chemically grown amorphous SiO2 (as may for 

instance be seen in previous publications on HfO2 gate oxides21).  The key question is 

why the [110] texture appears on crystallisation during the post-deposition anneal and 

this may be answered by considering its growth.  Previous studies of particulate HfO2 

growth have found that it typically transforms from amorphous to the tetragonal phase 

before this transforms to the stable monoclinic low-temperature phase12 whereas thin 

film studies have variously claimed to have found metastable cubic, tetragonal or 

orthorhombic phases forming either prior to the stable monoclinic phase, or retained 

as a minority phase alongside the monoclinic phase4,13-15.  If we consider the structure 

of tetragonal or cubic HfO2 then there is only one low index plane in the structure that 

is uncorrugated and charge neutral: the {110} plane, and this is illustrated in Figure 6.  

So, it would seem likely that a metastable cubic/tetragonal/orthorhombic phase is 

formed in the initial crystallisation where rafts of {110} planes form starting from the 

SiOx interface, thus seeding a [110] texture.  It should be noted that Bohra et al. also 

noted a <110> out of plane texture in their metastable phase films4. 

This [110] texture inevitably leads to twinning on transformation to the 

monoclinic phase for very simple reasons.  Figure 7 shows a schematic diagram of the 

effect of the transformation on a single grain of tetragonal hafnia.  It is clear that the 

transformation will lead to significant shear stresses (as well as delamination stresses 

at the film substrate interface) due to the change in cell angles, but if the 



transformation direction is periodically reversed as in Figure 7c, then these can be 

minimised at the expense of twinning the grain. 

In some cases, however, two twinning modes are observed in the same grain 

perpendicular to each other with both {110} and (001) twinning.  The reason for this 

is most likely related to the overall shape strain caused by twinning after 

transformation from the metastable phase (assumed for these calculations to be 

tetragonal).  Unfortunately, we do not have access to any lattice parameters for 

tetragonal HfO2 near room temperature.  To get round this difficulty we have 

extrapolated some room temperature lattice parameters for tetragonal zirconia from 

the data provided by Wang et al.7 in their graph of the variation of lattice parameters 

with temperature for the tetragonal and monoclinic phases (Figure 4a in their paper).  

The extrapolated lattice parameters for the tetragonal phase at room temperature were 

a = 5.061 Å and c = 5.201 Å.  Although there is some uncertainty about the 

extrapolation of the tetragonal parameters comparison to this lattice parameters for 

nanoparticles of metastable tetragonal zirconia at room temperature show parameters 

of a = 5.065 Å and c = 5.1685 Å22, so these hafnia extrapolations seem reasonable.   

If we consider a grain oriented with [110] out-of-plane, and it twins on ( 011 ) 

planes, then perpendicular to the twin plane, the spacing will change by about +0.95 

% on transformation.  The perpendicular in-plane direction will correspond to [001] 

and this will increase in length by about +1.7 % on transformation.  Thus {110} 

twinning causes an anisotropic lengthening of the grain along [001].   

If we twin the same grain on (001), then the strain along the direction 

perpendicular to these (001) planes is only ~ +0.42 %, which is significantly less than 

that caused by the ( 011 ) twinning in the [001] direction.  In the perpendicular [ 011 ] 



direction, (001) twinning causes a large strain of ~ +1.7 %.   So, (001) twinning 

causes an anisotropic expansion in the  [ 011 ] direction.   

The consequence of the anisotropic shape strain for both {110} and (001) 

twinning is that to keep the grain expansion as isotropic as possible we will need to 

have a combination of {110} and (001) twinning in the same grain, and this is 

illustrated in Figure 8.  This has features in common with earlier suppositions by Zhao 

et al.19 that twinning may run in perpendicular directions but this now has a proper 

crystallographic analysis and a strain-based justification for why perpendicular 

twinning in a single grain takes place. 

Finally, it remains to consider why a small fraction of metastable material 

remains in the film as seen in diffraction patterns and imaged in Figure 5b.  It is well 

known that a certain fraction of the tetragonal phase can be metastably retained to 

room temperature in zirconia due to physical constraints in the sample preventing the 

transformation; and this is of great technological importance in transformation-

toughened zirconia23.  In view of the much smaller volume change in the tetragonal to 

monoclinic transformation for HfO2, transformation-toughening cannot be usefully 

applied to this material7.  Nevertheless, it is believable that a small volume fraction of 

the tetragonal phase or possibly one of the other metastable phases could be retained 

to room temperature in areas where the compressive stress is so high that the 

transformation to monoclinic is inhibited.  Previous studies have also found 

diffraction evidence for the retention of a small fraction of 

tetragonal/cubic/orthorhombic material in monoclinic HfO2 films18,21. 

 



Conclusions 

Thin (3.5-4 nm) films of HfO2 grown by ALD on a silicon (100) substrate 

with 1 nm chemically produced oxide on the surface show a clear polycrystalline 

structure with a grain size of the order of 100 nm.  Electron diffraction reveals that 

there is a notable [110] out-of-plane crystallographic texture in these films.  The 

grains often display twinning with some grains showing (110) twinning, whereas 

others show both (110) and (001) twinning.  A tiny volume fraction of metastable 

tetragonal/cubic/orthorhombic material could also be detected in the films. 

The out-of-plane texture probably arises from the film initially crystallising in 

a tetragonal, cubic or possibly orthorhombic structure with rafts of atoms on (110) 

planes forming parallel to the substrate, followed by the transformation to monoclinic.  

The transformation to monoclinic also drives the twinning since this will minimise 

shear strains.  It is shown that two perpendicular twinning modes help to equalise the 

overall shape strain and this may explain the observation of multiple twinning in some 

larger grains.  The strain resulting from the transformation may also be high enough 

to prevent the transformation of some small areas to the monoclinic phase resulting in 

the retention of a small volume fraction of the metastable phase.  This retention of the 

metastable phase may be significant for its use as a high-k layer since the tetragonal 

phase is known to have a higher dielectric constant than the monoclinic phase3.  This 

could lead to local inhomogeneities in dielectric constant and thus in the electric field 

applied to the channel beneath the gate in a MOSFET device. 
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Figure captions 

FIG. 1: Large area dark field micrograph of the HfO2 film showing grains of the order 

of 100 nm in size, which often show a striped or striated appearance. 

 

FIG. 2: Selected area diffraction patterns from the film: left hand half recorded at 5° 

tilt from the [001] axis of the Si substrate so as to be almost on axis, but with reduced 

diffracted intensity from the Si; right hand half recorded at 45° tilt from the [001] axis 

of the Si. 

 

FIG. 3: More detailed analysis of a striated grain: a) dark field image created using 

one diffraction spot (labelled a in Figure 3c)); b) dark field image created using the 

diffraction spot b of Figure 3c); in both a) and b) an asterisk is inserted to the same 

position to show that the contrast in a) is from a different set of lamellae to that in b); 

c) selected area diffraction pattern of this area with some spots labelled and the 

boundary trace drawn in, after compensating for the rotation between diffraction and 

image modes; d) modelled diffraction pattern created using Desktop Microscopist 

assuming that the spots a and b come from crystals related by (110) twinning. 

 

FIG. 4: Detailed analysis of a grain with striations in two perpendicular directions: a) 

dark field image; b) selected area diffraction pattern showing splitting into four spots 

in a cross shape at the 111/ 111  positions; c) modelled diffraction pattern created 

using Desktop Microscopist using both (110) twinning (red, blue triangles) and (001) 

twinning (dark brown, dark green squares), colour and shapes were added to help the 

reader. 

 



FIG. 5: Imaging of the metastable phase in a grain in the film: a) Diffraction pattern 

from the area of interest with spots labelled, the metastable spot is indexed according 

to the face-centred-tetragonal/cubic unit cell; b) Three colour image showing twinned 

monoclinic HfO2 in red and cyan, together with the untwinned metastable phase at the 

top in a greenish/red colour. 

 

FIG. 6: The (110) plane of the face-centred-tetragonal HfO2 structure (almost 

identical to the same plane in the face-centred-cubic structure). 

 

FIG. 7: Schematic diagram of how twinning minimises the shear deformation of a 

single grain: a) tetragonal parent grain; b) untwinned monoclinic grain with a large 

shear deformation; c) twinned monoclinic grain with a similar shape to the parent 

grain. 

 

FIG. 8: Schematic diagram of how twinning on two planes minimises anisotropic 

shape strain of a grain. 
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