Were the Larsemann Hills ice-free through the Last Glacial Maximum?

Hodgson, D.A. et al. (2001) Were the Larsemann Hills ice-free through the Last Glacial Maximum? Antarctic Science, 13(4), pp. 440-454. (doi: 10.1017/S0954102001000608)

Full text not currently available from Enlighten.

Publisher's URL: http://dx.doi.org/10.1017/S0954102001000608

Abstract

Lake sediments in the Larsemann Hills contain a great diversity of biological and physical markers from which past environments can be inferred. In order to determine the timing of environmental changes it is essential to have accurate dating of sediments. We used radiometric (Pb-210 and Cs-137), radiocarbon (AMS C-14) and uranium series (U-238) methods to date cores from eleven lakes. These were sampled on coastal to inland transects across the two main peninsulas, Broknes and Stornes, together with a single sample from the Bolingen Islands. Radiometric dating of recent sediments yielded Pb-210 levels below acceptable detection limits. However, a relatively well-defined peak in Cs-137 gave a date marker which corresponds to the fallout maximum from the atmospheric testing of atomic weapons in 1964/65. Radiocarbon (AMS 14C) measurements showed stratigraphical consistency in the age- depth sequences and undisturbed laminae in some cores provides evidence that the sediments have remained undisturbed by glacial action. In addition, freshwater surface sediments were found to be in near-equilibrium with modem C-14, and not influenced by radiocarbon contamination processes. This dating program, together with geomorphological records of ice flow directions and glacial sediments, indicates that parts of Broknes were ice-free throughout the Last Glacial Maximum and that some lakes have existed continuously since at least 44 ka BP. Attempts to date sediments older than 44 ka BP using U-238 dating were inconclusive. However, supporting evidence for Broknes being ice-free is provided by an Optically Stimulated Luminescence date from a glaciofluvial deposit. In contrast, Stornes only became ice-free in the mid to late Holocene. This contrasting glacial history results from the Dalk Glacier which diverts ice around Broknes. Lakes on Broknes and some offshore islands therefore contain the oldest known lacustrine sediment records from eastern Antarctica, with the area providing an ice-free oasis and refuge for plants and animals throughout the Last Glacial Maximum. These sediments are therefore well placed to unravel a unique limnological sequence of environmental and climate changes in East Antarctica from the late Pleistocene to the present. This information may help better constrain models of current climate changes and ensure the adequate protection of these lakes and their catchments from the impacts of recent human occupation.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Bryant, Dr Charlotte
Authors: Hodgson, D.A., Noon, P.E., Vyverman, W., Bryant, C.L., Gore, D.B., Appleby, P., Gilmour, M., Verleyen, E., Sabbe, K., Jones, V.J., Ellis-Evans, J.C., and Wood, P.B.
Subjects:Q Science > QE Geology
College/School:College of Science and Engineering > Scottish Universities Environmental Research Centre
Journal Name:Antarctic Science
ISSN:0954-1020

University Staff: Request a correction | Enlighten Editors: Update this record