Modelling and trading the EUR/USD exchange rate at the ECB fixing

Dunis, C.L., Laws, J. and Sermpinis, G. (2010) Modelling and trading the EUR/USD exchange rate at the ECB fixing. European Journal of Finance, 16(6), pp. 541-560. (doi:10.1080/13518470903037771)

Full text not currently available from Enlighten.

Publisher's URL: http://dx.doi.org/10.1080/13518470903037771

Abstract

The motivation for this paper is to investigate the use of alternative novel neural network (NN) architectures when applied to the task of forecasting and trading the euro/dollar (EUR/USD) exchange rate, using the European Central Bank (ECB) fixing series with only auto-regressive terms as inputs. This is done by benchmarking four different NN designs representing a higher-order neural network (HONN), a Psi Sigma Network and a recurrent neural network with the classic multilayer perception (MLP) and some traditional techniques, either statistical such as an auto-regressive moving average model, or technical such as a moving average convergence/divergence model, plus a naïve strategy. More specifically, the trading performance of all models is investigated in a forecast and trading simulation on the EUR/USD ECB fixing time series over the period 1999–2007 using the last one and half years for out-of-sample testing, an original feature of this paper. We use the EUR/USD daily fixing by the ECB as many financial institutions are ready to trade at this level and it is therefore possible to leave orders with a bank for business to be transacted on that basis. As it turns out, the MLP does remarkably well and outperforms all other models in a simple trading simulation exercise. However, when more sophisticated trading strategies using confirmation filters and leverage are applied, the HONN network produces better results and outperforms all other NN and traditional statistical models in terms of annualized return.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Sermpinis, Professor Georgios
Authors: Dunis, C.L., Laws, J., and Sermpinis, G.
College/School:College of Social Sciences > Adam Smith Business School > Economics
Journal Name:European Journal of Finance
ISSN:1351-847X
ISSN (Online):1466-4364
Published Online:03 July 2009

University Staff: Request a correction | Enlighten Editors: Update this record