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Abstract

This paper presents some recent results on the deflection of potentially dangerous
Near Earth Objects. A particular deflection technique, employing a swarm of mirrors
focusing the light of the Sun on the surface of the asteroid, is described. The swarm
has to fly in formation with the asteroid, or hover in close proximity. The paper
describes two different designs for the mirrors, and different options to place the
spacecraft in the vicinity of the asteroid. In particular the paper shows a number
of periodic formation orbits. As an alternative, results are shown by placing the
spacecraft at fixed points in close proximity to the asteroid, where the solar pressure
and the gravity attraction balance each other.
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1 Introduction

Since the discovery of the asteroid Apophis in December 2004, there has been
a revived interest in techniques to deflect asteroids. From the initial observa-
tions, Apophis is expected to have a close encounter with the Earth in 2029.
During that event Apophis could pass through a gravitational keyhole, a pre-
cise region in space no more than about 400 meters across, which would set up
a future impact on 13 April 2036. Among the approaches proposed to deflect
the trajectory of an asteroid, there are some that consider the generation of
a thrust by ablating some surface material. Surface ablation approaches have
been proposed in the past using several techniques such as lasers or nuclear
explosives. One method in particular conceptualized directing solar energy us-
ing mirrors onto a small area on the surface of the asteroid. The idea initially
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appeared on the journal Space Policy [4] and was later compared to other de-
flection methods by Melosh et al. [8]. The heat produced by the concentrated
solar light is used to sublimate the surface matter creating narrow but ex-
panding jets of gas and debris that produce a low continuous thrust. This low
thrust would eventually alter the orbit of the NEO by producing a change in
velocity.

In a previous studies by the author [10,11], the sublimation technique was
compared against other deflection methods and resulted to be among the
most effective methods. However, the use of a single mirror would imply the
deployment and control of a significantly large structure in space and presents
a number of difficulties from several points of view, recently pointed out by
Kahle et al.[3].

While some difficulties are related to the control of the mirror in proximity of
the asteroid, others are related to the positioning of the mirrors in order to
avoid any impingement with the plume of gas and debris leaving the asteroid,
and at the same time maintain the required power density on its surface. A
possible solution would be to use a swarm of mirrors that would focus the
light of the Sun on the same spot on the surface of the asteroid. The launch,
deployment and control of each spacecraft would be more practical than for
a single mirror, and the system would be intrinsically redundant and scalable
(for a bigger asteroid, we would need to add more spacecraft but the design of
each spacecraft would not require any modification or further development).

In a recent study [5], it was demonstrated how a significant deviation of the
asteroid Apophis could be achieved with a relatively small number of satellites
(20 to 40) each carrying a relatively small primary mirror (between 10 and
40 meters in diameter). Fig. 1 shows a comparison of the required minimum
diameter of the aperture of the primary parabolic mirror versus the duration of
the thrust. The comparisons were done for different swarm sizes ranging from
a single spacecraft (for a baseline comparison) up to 5000. For each swarm
size, the diameter of the illuminated spot size on the surface of the asteroid
was set to 0.5m or 1.5m. The difference can be seen as the duration of the
thrust increases; the lower branch corresponds to the 0.5m spot size, and the
upper branch, the 1.5m. This is expected as the higher the power density, the
smaller the spot size (or a higher concentration ratio for the same incoming
solar power). The deviation distance was nominally fixed equal to the Earth-
Moon distance at the Minimum Orbital Interception Distance (MOID) from
the Earth.

However, placing the mirrors in proximity of the asteroid was still an open
issue. In particular the analysis of the orbital maintenance of the mirrors was
still missing. In this paper, the multi-mirror option is presented together with
an analysis of the positioning of the mirrors in the vicinity of the asteroid. A
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Fig. 1. Diameter of the mirror vs total duration of the deviation action for a variable
number of spacecraft for a fixed deviation of the orbit of Apophis of 384403 km
(Earth-Moon distance) at the MOID.

model for two different configurations – a novel single and dual-mirror con-
figuration – will be presented. Apophis is used as case study because of the
relatively high threat posed by this particular asteroid.

The first section of the paper will describe the two mirror configurations and
the derivation of the force due to the solar pressure acting on the spacecraft.
The second section will present a family of formation orbits that can be used
to place and control the mirrors. The third section will present an alternative
method to place and control the mirrors at artificial equilibrium points (AEPs)
in proximity of the asteroid.

2 Mirror Design

The design of the device that is focusing the light of the Sun on the surface
of the asteroid is a critical aspect of this deflection method. The device has
to be able to concentrate a minimum power density at all times (see Sanchez
et al. [11] for further details). Therefore, it is required to have the capability
to steer the beam of light to hit any part of the asteroid and to control the
concentration factor (or amount of light that is focused on a particular spot).

Here we propose two different configurations for the focusing device: a parabolic
symmetric primary mirror with collimating lens and secondary directional mir-
ror (Fig. 2a), and an asymmetric focusing mirror with collimating lens and
no directional mirror (Fig. 2b). In the former case the primary mirror always
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Fig. 2. Dual-mirror (left) and single mirror (right) configurations.

points toward the Sun. The lens(es) produces a collimated beam of light that
reflects on the secondary mirror and is projected onto the surface of the aster-
oid. In the latter case the primary mirror should be properly oriented based on
the Sun vector. The configuration in Fig. 2b can be easily modified by remov-
ing the lens and focusing the light directly on the surface of the asteroid. If
the light is focused directly on the surface of the asteroid, the focal point has
to be moved away from the mirror and the mirror will result in being almost
flat.

Since the mirrors are moving with respect to the asteroid, we introduce a
local rotating reference frame centered in the barycenter of the asteroid (Hill’s
reference frame in Fig. 3). In this reference frame, the x axis is aligned with
the Sun-asteroid vector, the y axis is the direction of motion and the z axis
is perpendicular to the asteroid orbital plane in the direction of the orbital
angular momentum.

2.1 Single Mirror Configuration

The single mirror configuration is composed of an asymmetric adaptive pri-
mary mirror and of a collimating lens (or set of lenses). The shape of the
primary mirror is assumed to be adaptable such that the focal point can be
moved in order to steer the beam in the desired direction.

In order to define the shape of the mirror and its attitude with respect to the
Sun we introduce the mirror reference frame in Fig. 4, with coordinated axes
xM , yM , zM . The mirror reference frame is tilted by an angle β with respect to
the Hill’s reference frame and is centered in the center of mass of the mirror
assembly. Note that in the following analysis we assume that the spacecraft is
a point mass and therefore the position of its barycenter does not change for
any variation of the shape of the mirror.
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Fig. 3. Hill’s rotating reference frame in the radial x, transversal y and normal z
directions.

Fig. 4. Definition of the mirror reference frame with respect to the Hill’s rotating
reference frame.

Fig. 5. Geometry for mirror design.

Now, given the position of the focal point Pf in the mirror reference frame
and the position of a mirror element with infinitesimal area dA, the law of
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reflection (assuming a perfect reflection) gives us (see Fig. 5):

dxM

dyM

= tan [β − π/2− α (xM , yM , xf , yf , β)] (1)

where [xf , yf ] is the position of the focal point Pf , β is the Sun aspect angle
with respect to the reference frame of the mirror assembly and α is the re-
flection angle. Note that the angle β also represents the attitude angle of the
mirror reference frame with respect to the Hill’s reference frame and therefore
will be referred to as the attitude angle of the mirror in the following. By
integrating Eq. 1 with initial conditions yM0 and xM0 , we can get the shape of
each section of the mirror in the xM -yM plane given the position of Pf and the
direction of the incoming Sun rays. In the following, we will define the focal
distance as fp = xf − xM0 . The mirror is then considered to be symmetric
with respect to the xM -yM plane such that each section of the mirror parallel
to the xM -zM plane is a parabola with focus Pf .

Once the shape and orientation of the mirror are defined, the total force acting
on the mirror assembly can be computed by integrating the following expres-
sion over the surface of the mirror A:

dF = 2ηMPcos2αndA (2)

FSM = 2ηMP
∫

A

cos2αndA (3)

where the solar pressure at 1AU is P0 = 4.563 ·10−6 N/m2, P is the solar pres-
sure at a distance rd from the Sun P = P0(r1AU/rd)

2, r1AU is one astronomical
unit and ηM is the efficiency of the mirror (assumed to be 1.0).

2.2 Dual-mirror Configuration

For the dual-mirror configuration, three forces have to be taken into account:
F1 = ηpriApriP (rd/rd) is the force due to the solar pressure acting onto the
primary mirror, F2 is the force due to the solar pressure acting onto the
secondary mirror and F3 is the force due to the reflected light from the primary
mirror onto the secondary mirror.

The primary mirror in this configuration is assumed to be parabolic and al-
ways pointing toward the Sun, while the secondary mirror is flat. Due to the
concentration factor, the power density of the reflected light is higher than the
one of the direct light, therefore, though the surface of the secondary mirror
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is smaller than the one of the primary, the reflected solar light exerts a force
on the secondary mirror which is:

F3 = −
(
2ηseccos

2α2

)
ηpriApriP n2 (4)

while F2 is simply:

F2 =
(
2ηseccos

2α2

)
AsecP n2 (5)

Both forces are acting in the direction normal to the secondary mirror sur-
face n2.

The total force acting on the mirror assembly (i.e. primary, secondary mirror
and lenses) is given by:

FDM = F1 + F2 + F3 (6)

expressed as a vector in the local Hill’s reference frame.

3 Funnel Formation Orbits

One option is to consider the asteroid as a point mass and the spacecraft
flying in formation with it, the asteroid being the chief or target and the
spacecraft the chasers. As a first approximation, the gravity field of the aster-
oid is considered to have negligible influence on the motion of the spacecraft.
This situation corresponds to the spacecraft flying outside the sphere of influ-
ence of the asteroid or compensating for its gravity attraction with an active
control. Furthermore, it is assumed that no other forces are acting on the
spacecraft apart from the gravity attraction of the Sun. The position vector
of the spacecraft is therefore given by[12]:

x(θ) = rc

a
δa− a cos θδe + ae sin θ

η
δM

y(θ) = rc sin θ
η3 (2 + e cos θ)δe + rc cos i rc

η3 (1 + e cos θ)2δΩ+

rcδω + rc

η3 (1 + e cos θ)2δM

z(θ) = rc sin θ∗δi− rc cos θ∗ sin iδΩ

(7)

where p = [a, e, i, ω, Ω,M ]T are the orbital parameters of the asteroid, δp =
[δa, δe, δi, δω, δΩ, δM ]T their variation, η =

√
1− e2, rc is the modulus of the

inertial orbital radius of the asteroid, θ is the true anomaly, θ∗ = θ + ω is the
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Fig. 6. Geometry for the design of funnel orbits.

true latitude, h = η
√

aµS is the orbital momentum, µS is the gravity constant
of the Sun and x, y and z are the local cartesian Hill’s frame coordinates.

The motion described by Eqs. 7 is governed by the dynamic equations[12]:

ẍ = 2θ̇(ẏ − y ṙc

rc
) + xθ̇2 + µS

r2
c
− µS

r3
d
(rc + x)

ÿ = −2θ̇(ẋ− x ṙc

rc
) + yθ̇2 − µS

r3
d
y

z̈ = −µS

r3
d
z

(8)

We want to maintain a periodic motion of the mirrors in the proximity of
the asteroid therefore we impose the condition for periodicity δa = 0 which
guarantees that δM is constant.

Given that all the mirrors will have to focus the light onto the same spot, the
pointing requirements should be minimized, which implies a close proximity
to the asteroid. On the other hand, it is desirable to limit the gravitational
perturbations from the asteroid and therefore the satellites should fly outside
a limit sphere. In addition, the satellites should avoid impingement with the
exhaust gases caused by the sublimation of the asteroid material.

If we assume that the optimal thrust direction that maximizes the deviation is
along the unperturbed velocity vector of the asteroid [14,1] then the exhaust
gasses will flow along the y axis of the local Hill’s reference frame. The problem
can be formulated in mathematical terms as follows (see Fig. 6):

min
δp∈D

min
θ

f1 = r (9)

min
δp∈D

min
θ

f2 = −
√

x2 + z2 (10)
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Fig. 7. Pareto front for the funnel orbits problem.

subject to the constraint:

C = min
θ

(r(θ)− rsph) > 0 (11)

where and rsph is a limit sphere and D is the search space for the solution
vector δp and r = ‖r‖ is the modulus of the position vector of the mirror with
respect to the asteroid r = [x, y, z]T . The problem in Eqs. 9, 10 and 11 was
solved with a hybrid stochastic-deterministic approach based on a multiagent
search technique combined with a decomposition of the search space [6,13].
Fig. 7 shows the resulting Pareto optimal solutions to Eq. 9 for rsph = 2.3 km,
which is a limit imposed to avoid the effects of the inhomogeneous gravity
field of the asteroid.

Fig. 8 is showing the set of Pareto optimal solutions in the parameter space. As
can be seen, the solutions are symmetrically distributed about the value 0 of
the δ parameters. It is interesting to note that for the same value of δω or δΩ,
there are multiple values for f1 and f2. This suggests the existence of multiple
families of formation orbits with different characteristics with respect to the
criteria f1 and f2. The whole set of Pareto optimal orbits are represented in
Fig. 9. They form two funnels growing in diameter as the orbits move away
from the asteroid. The Pareto front in Fig. 7 presents an almost vertical set of
points and a ‘knee’ where the front changes slope. The orbits belonging to the
vertical set are represented in Fig. 10 (left graph). In the same figure (right
graph), we also plotted some particular solutions with a higher value of f1 and
f2. These solutions form four families of symmetric orbits. The existence of
these solutions suggests that the problem may present four complete funnels,
and not just two as in Fig. 9, where for the other two funnels only few orbits
are represented.
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Fig. 8. δ parameter for Pareto optimal solutions, all values are scaled by 1e-7.

Fig. 9. Funnel configuration for the solutions of Eq. 9 with rsph = 2300 m.

A similar configuration can be also obtained for a limit sphere of 45 km which
corresponds to the distance at which the gravity of the asteroid becomes ir-
relevant. In this case, though, the pointing accuracy would be one order of
magnitude higher.
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Fig. 10. Funnel configuration for the solutions of Eq. 9 with rsph = 2300 m: left
figure represents the solutions in the vertical part of the Pareto set before the knee,
right figure represents two families of symmetric orbits for each funnel.

3.1 Orbit Maintenance

Funnel formation orbits were designed assuming no solar pressure and no
gravity attraction from the asteroid. In order to consider the gravity attrac-
tion from the asteroid negligible, as mentioned before, the mirror should be
placed outside the sphere of influence of the NEO, with a consequent stringent
requirement on the pointing capabilities of the mirror. Furthermore, although
at that distance the gravity of the asteroid becomes negligible, the solar pres-
sure still plays an important role in the dynamics of the spacecraft. Another
option is to compensate for the gravity attraction and for the solar pressure. If
this strategy is adopted a thrust has to be generated in the opposite direction
of the resultant of the two forces.

Eqs. 8 assume that the asteroid is not a gravitational body and that there is
no other force than the gravity attraction of the Sun. If the contribution of the
gravity field of the asteroid and of the solar pressure are taken into account,
Eqs. 8 have to be rewritten in the following form:

ẍ = 2θ̇(ẏ − y ṙc

rc
) + xθ̇2 + µS

r2
c
− µS

r3
d
(rc + x)− µA

r3 x + ŝx(x,y,z)
m

+ ux

m

ÿ = −2θ̇(ẋ− x ṙc

rc
) + yθ̇2 − µS

r3
d
y − µA

r3 y + ŝy(x,y,z)
m

+ uy

m

z̈ = −µS

r3
d
z − µA

r3 z + ŝz(x,y,z)
m

+ uz

m

(12)
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Fig. 11. Funnel orbits: (left) the controls for a Pareto solution at the knee of the
Pareto front; (right) the controls for the solution farthest away from the asteroid.

where µA is the gravity constant of the asteroid, u = [ux, uy, uz]
T is the control

force, m is the mass of the spacecraft, and the contribution of the solar pressure
FSM = [ŝx, ŝy, ŝz]

T is derived from Eq. 6

We can now estimate the required control capabilities by plugging the position
and velocity time history for the funnel orbits into the equations of motion and
solving for the control required to compensate for solar pressure and gravity
attraction of the asteroid. We assume here an initial mass of the spacecraft
m = 2000 kg and a surface area of the primary mirror Apri = 196 m2 with a
secondary mirror of 0.5 m in diameter.

Fig. 11 represents the three components of the control thrust for the forma-
tion orbit at the knee of the Pareto front (left graph) together with the control
thrust for the formation orbit furthest away from the asteroid (right graph).
It is interesting to note that the magnitude of the control for the two orbits
is quite similar. This suggests, as expected, that the controls are mainly com-
pensating for the solar pressure, with the gravity attraction of the asteroid
being less significant.

4 Artificial Equilibrium Points for a Solar Concentrator

If solar pressure and the gravity field of the asteroid are taken into account
then the mirrors can be designed so that the two forces are in equilibrium, with
the spacecraft hovering at a fixed location (and distance) from the asteroid.
Note that unlike the problem of finding AEPs for a flat reflector[7], here we
analyze the case of a curved reflector with pointing constraints.

Considering that the mirror has to constantly reflect the light onto the surface
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of the asteroid (pointing constraint), if the mirror was flat the only possible
equilibrium configuration would be with the asteroid-mirror direction aligned
with the spacecraft-Sun direction. If the mirror is not flat, instead, then we can
look for possible position vectors r, solar aspect angles β and focal distances
fp such that the vector FSM = [sx, sy, sz]

T is aligned with the asteroid-mirror
direction and:

−2θ̇y ṙc

rc
+ xθ̇2 + µS

r2
c
− µS

r3
d
(rc + x)− µA

r3 x + sx(x,y,z,β,fp)
m

= 0

2θ̇x ṙc

rc
+ yθ̇2 − µS

r3
d
y − µA

r3 y + sy(x,y,z,β,fp)
m

= 0

−µS

r3
d
z − µA

r3 z + sz(x,y,z,β,fp)
m

= 0

(13)

Note that, the force due to solar pressure is obtained from Eq. 2. In the
following, we will consider only the planar case with z = 0, since in this case
the third equation in Eq. 13 is satisfied.

Figs. 13 represent the misalignment of the force vector due to the solar pressure
with respect to the spacecraft-asteroid direction for two different focal lengths.
In the figures L is the length of the projection of the mirror onto the yM axis
of the mirror reference frame. The angle β, as before, is the direction of the
light impacting on the mirror while ∆β is the angle between the incoming
sunlight and the direction of the focal point of the mirror (see Fig.4). The
direction of the focal point identifies the pointing direction. We consider only
one quadrant of the Hill’s frame with positive x and negative y. For positive x
and positive y the solutions are symmetric; there are no solutions in the other
two quadrants.

As it can be seen for β = π/2, the only equilibrium solutions are along the
Sun-asteroid direction. However, in this case the mirror would be in shadow
and therefore no equilibrium points can exist along that direction. For higher
values of β, equilibrium points can exist at higher angular distances from the
radial direction. For example, for β = 139 deg the mirror can be placed at
r = [1.3699, 0.48225, 0]T km, which is about 20 deg from the radial direction
(Fig. 12 shows the level of acceleration acting on the spacecraft).

This artificial equilibrium point offers a good location for projecting the light
of the Sun on the side of the asteroid along the y direction, and away from the
plume of gases. If we assume that the lens produces a collimated light beam
with negligible divergence, and that the beam is projected at the intersection
of the surface of the asteroid with the y-axis, then we can compute where the
two extreme points of the beam intersect the surface of the asteroid. From
this intersection, we can compute the spot size given the beam size and the
elevation over the y-axis. As can be seen in Fig. 15, for a beam size between
0.5 and 1 m in diameter, the increase in spot size due to an elevation of 70
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(right) the misalignment for a focal distance equal to 2.5L.

degrees along the y-axis and 20 degrees from the radial x-axis, is still limited.

4.1 Orbit Maintenance

Solar pressure depends on the distance from the Sun, therefore, if the size of
the mirror is constant, as the asteroid moves around the Sun the force acting
to the spacecraft changes with the true anomaly θ. As a consequence, the
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position of the equilibrium points changes with time unless the orbit of the
asteroid is circular.

Fig. 16 shows, for different attitudes of the mirror (left plot), the position of the
equilibrium points over a full orbit of the asteroid Apophis. Fig. 16 also shows
(right plot) the variation of the position of the AEP for a particular attitude of
the mirror, over half an orbit. The black dots represent the computed position
of the equilibrium points for an angle β = 129 deg while the continuous line
is given by the following equations,

xAEP = rAEP (θ0) cos(ε)(1 + e cos(θ0))/(1 + e cos(θ))

yAEP = rAEP (θ0) sin(ε)(1 + e cos(θ0))/(1 + e cos(θ))
(14)

where ε = arctan
[

yAEP (θ0)
xAEP (θ0)

]
is the angular position of the AEP for θ = θ0.

Then, the distance of the AEP from the asteroid varies with the following
law:

rAEP = rAEP (θ0)(1 + e cos(θ0))/(1 + e cos(θ)) (15)

Since the AEPs are moving, a spacecraft placed at an AEP would move toward
the asteroid or away from the asteroid depending on the initial θ. Specifically,
for θ ∈ [0, π] the spacecraft would fall toward the asteroid, while for θ ∈ [π, 2π]
the spacecraft would escape along the radial direction.

We can envisage two strategies to maintain the orbital position of the mirror:
compensating for solar pressure and gravity attraction with an active control
(low-thrust)or letting the spacecraft drift along the radial direction chasing
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Fig. 17. Control profiles for orbit maintenance for A = 196 m2.

the position of the equilibrium points.

In order to chase the AEP the spacecraft has to move with the same kinemat-
ics, therefore we can impose the following velocity and acceleration:

dx

dt
=

drAEP

dt
cos(ε)

dy

dt
=

drAEP

dt
sin(ε) (16)

d2x

dt2
=

d2rAEP

dt2
cos(ε)

d2y

dt2
=

d2rAEP

dt2
sin(ε) (17)

with:

drAEP

dt
=

r2
AEP e sin(θ)θ̇

rAEP0

(18)

d2rAEP

dt2
=

erAEP

rAEP0

[
2ṙAEP sin(θ)θ̇ + rAEP cos(θ)θ̇2 + rAEP sin(θ)θ̈

]
(19)

Eqs. 16 and 17 represent an imposed shape to the motion of the spacecraft.
If we then substitute Eqs. 14, 16 and 17 into the dynamic equations and
solve for the controls we can get the required thrust components to follow the
prescribed kinematics.

In Fig. 17 we present an example of thrust profile for the former strategy (left
image) and for the latter strategy (right image).

As it can be seen, the control capability required to maintain a fixed position is
greater than the one required to chase the AEP. A possible scenario, therefore,
is that the swarm can be distributed around the asteroid at different angles ε
and the mirrors would move back and forth along the radial directions.
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Fig. 18. Geometry of an ellipsoidal asteroid.

4.2 AEPs for a Non-spherical Asteroid

The analysis presented in the previous section is valid for a spherical asteroid
with a homogenous gravity field. However asteroids have an irregular shape
with a very inhomogeneous gravity field. As done previously by other authors,
we can assume that the asteroid is an ellipsoid with semi-axes aI , bI and cI

(see Fig. 18). In particular we assume that the semi-axis cI is aligned with the
z axis of the Hill’s frame and that the asteroid is rotating around the z axis
with angular velocity ωR. Note that the rotation around z is most likely not
the only motion associated to an irregular asteroid. For example, it can be
expected that an irregular body is also wobbling but these additional motion
components are not considered in the present analysis. Furthermore, during
the ablation process the mass of the asteroid changes (see Ref.[11]) as well
as its shape. In fact, the strategy considered here and in Sanchez et al. [11]
is not to track a fixed spot on the surface of the asteroid but to keep the
the direction of the beam substantivally fixed, as the surface of the asteroid
moves under the spotlight. The result is to plough the asteroid as the sub-
satellite point is moving along its surface. Moreover, in the ideal case, the
lenses should generate a perfectly collimated beam, thus no adaptive focusing
would be needed when the surface of the asteroid moves away or closer to
the mirror. In the real case, instead, it is expected that the position of the
lenses can be controlled to improve the focusing of the beam. However, even
the change in mass and shape of the asteroid is not considered in the present
analysis, as it is minimal over short periods of time, and will be addressed in
a future study.

With this assumptions we can express the gravity field of the asteroid as the
sum of a spherical field plus a second-degree and second-order field[2,9]:

U20+22 =
µA

r3
[C20(1− 3

2
cos2 δ) + 3C22cos

2δ cos 2λ] (20)
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Fig. 19. AEPs for a non spherical asteroid: (left) AEPs for different elongations and
for a full revolutions of the asteroid; (right) a close up for few degrees around the
perihelion.

where the harmonic coefficients C20 and C22 can be expressed as a function of
the semi-axes:

C20 = − 1
10

(2c2
I − a2

I − b2
I)

C20 = 1
20

(a2
I − b2

I)
(21)

and the angles δ and λ are defined as:

δ = 0

λ = arctan( y
x
) + ωRt

(22)

Note that as before we are only interested in the in-plane motion and therefore
δ is taken equal to 0. The equations for the equilibrium points then become:

−2θ̇y ṙc

rc
+ xθ̇2 + µS

r2
c
− µS

r3
d
(rc + x)− µA

r3 x + sx

m
+ ∂U20+22

∂x
= 0

2θ̇x ṙc

rc
+ yθ̇2 − µS

r3
d
y − µA

r3 y + sy

m
+ ∂U20+22

∂y
= 0

−µS

r3
d
z − µA

r3 z + sz

m
+ ∂U20+22

∂z
= 0

(23)

We assume an angular speed of one revolution every 30 hours as for the as-
troid Apophis and three different elongations: bI/aI = 0.73, bI/aI = 0.51 and
bI/aI = 0.34. Since we are interested only in the in-plane motion, we can
set cI = bI . Fig. 19 shows the position of the AEPs for the three different
elongations over one full orbit of the asteroid around the Sun.
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Fig. 20. AEPs station keeping control for a non spherical asteroid.

If now we apply the same control strategy as proposed in the previous section
and we force the spacecraft to follow the position of the AEP for a spherical
asteroid we get the control profiles represented in Fig. 20.

5 Final Remarks

In this paper we presented an analysis of the proximal motion of a set of mirrors
with respect to an asteroid. Two configurations for the mirrors were analyzed
and for each one a different strategy for orbit maintenance was considered. In
particular, the dual-mirror configuration led to the definition of a particular set
of formation orbits composing two symmetric funnels with the principal axis
aligned with the y-axis of the Hill’s reference frame. These funnel orbits allow
the spacecraft to have a very good visibility of the target spot on the surface
of the asteroid and at the same time give some room for the plume of gas to
flow with minimal impingement. The funnel orbits are located outside a limit
sphere, where the gravity field of the asteroid can be considered homogenous.
This limit sphere imposes a requirement on the pointing accuracy and on the
focusing capabilities of the mirror assembling. A second option considered a
single-mirror configuration. For this second option the mirror can be placed
at artificial equilibrium points quite inclined over the y-axis of the Hill frame.
From this position, the spacecraft sees the target point on the surface of the
asteroid from a high elevation angle. However, AEPs can be found such that
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the distortion of the spot area due to the elevation angle is limited. For this
second option a control strategy was proposed that allows the spacecraft to
oscillate in a confined region in the proximity of the asteroid with very low
control thrust. Even adding the effect of the gravity field of an elongated body
the magnitude of the required control thrust remains limited. The low level of
thrust would suggest the use of FEEP engines, which would lead to a minimal
propellant consumption even over long operation times.
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