
http://eprints.gla.ac.uk/4988/

Deposited on: 17 April 2009
Noise from spatial heterogeneity changes signal amplification magnitude and increases the variability in dose responses.

Jongrae Kim¹, Xuerong Mao¹, Pat Heslop-Harrison†

¹Department of Aerospace Engineering, University of Glasgow, Glasgow G12 8QQ, UK, jkim@eng.gla.ac.uk
†Department of Statistics and Modelling Science, University of Strathclyde, Glasgow, G1 1XT, UK, xuerong@stams.strath.ac.uk

Objectives

In most molecular level simulations, spatial heterogeneity is neglected by the well-mixed condition assumption. However, the signals of biomolecular networks are affected from both time and space, which are responsible for diverse physiological responses. To account the spatial heterogeneity in the kinetic model, we consider multiple subvolumes of a reaction, introduce parameters representing transfer of ligands between the volumes, and reduce introducing noisy kinetic constants.

The effect of varying this term, δ, between 0 (well-mixed) and 1 (no mixing) and of adding noise to the kinetic constants was then investigated and correlated with knowledge of the behaviour of real systems and situations where network models are inadequate. The spatial distribution effects on the EGFR signal transduction pathway may evolve to reduce the effect from the spatial heterogeneity – through active transport mechanisms, or passive diffusion parameters appropriate for the reactions being manipulated.

Methods

In most molecular level simulations, spatial heterogeneity is neglected by the well-mixed condition assumption. However, the signals of biomolecular networks are affected from both time and space, which are responsible for diverse physiological responses. To account the spatial heterogeneity in the kinetic model, we consider multiple subvolumes of a reaction, introduce parameters representing transfer of ligands between the volumes, and reduce introducing noisy kinetic constants.

The effect of varying this term, δ, between 0 (well-mixed) and 1 (no mixing) and of adding noise to the kinetic constants was then investigated and correlated with knowledge of the behaviour of real systems and situations where network models are inadequate. The spatial distribution effects on the EGFR signal transduction pathway may evolve to reduce the effect from the spatial heterogeneity – through active transport mechanisms, or passive diffusion parameters appropriate for the reactions being manipulated.

The steady-state of the dose response in the EGFR is strongly affected by spatial fluctuations. The ligand-bound receptor is reduced up to 50% from the response without spatial fluctuations and the variance of the steady-state is increased at least 2-fold from the one for no spatial fluctuations. On the other hand, dynamic properties such as the rising time and overshoot are less sensitive to spatial noise.

Conclusions

The EGFR signal transduction pathway may evolve to reduce the effect from the spatial heterogeneity – through active transport mechanisms, or selection to exploit rapidly transported ligands - or have some control architecture - localization of reactions in appropriate sub-domains within the cell - to carefully manage not only timing but also spatial distributions. From the pharmaceutical point of view, since the dose response is significantly diminished by the spatial non-uniformity, to maximise the response not only the amount but also the spatial distribution of the dose must be carefully controlled – targeted to particular cellular domains, having active transport and passive diffusion parameters appropriate for the reactions being manipulated.

Acknowledgements

This work was supported by the Department of Aerospace Engineering, University of Glasgow, Glasgow, UK.

References