
http://eprints.gla.ac.uk/465/

Deposited on: 29th October 2004
Quantitative detection of atropine-delayed gastric emptying in the horse by the 13C-octanoic acid breath test

D. G. M. SUTTON*, A. BAHR†, T. PRESTON‡, N. D. COHEN†, S. LOVE and A. J. ROUSSEL†

Institute of Comparative Medicine, University of Glasgow Veterinary School, Bearsden Road, Glasgow G61 1QH, UK; †Link Equine Colic Research Group, Department of Large Animal Medicine and Surgery, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843-4475, USA; ‡Isotope Biochemistry Laboratory, Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride, Glasgow G75 0QF, UK.

Keywords: horse; delayed gastric emptying; 13C-octanoic acid; radiospectrography

Summary

The 13C-octanoic acid breath test has been correlated significantly to radiospectrography for measurement of gastric emptying indices in healthy horses. The objective of this study was to investigate the validity of the test for measurement of equine delayed gastric emptying, prior to its potential clinical application for this purpose. A model of atropine-induced gastroparesis was used. Gastric emptying rate was measured twice in 8 horses using concurrent radiospectrography and/or breath test after treatment i.v. with either atropine (0.035 mg/kg bwt) or saline in randomised order.

Analysis of both data sets demonstrated that the atropine treatment had caused a significant delay in gastric emptying rate. Paired breath test data showed an atropine-induced delay in gastric half-emptying time ($t_{1/2}$), with no overlap in the 99% CI range (P<0.001). Significant correlations were found between scintigraphy and 13C-octanoic acid breath test for calculation of both $t_{1/2}$ (P<0.01) and lag phase duration (P<0.05) in the atropine-delayed emptying results. The mean (s.d.) bias in breath test $t_{1/2}$ when compared with scintigraphy was 1.78 (0.58) h.

The results demonstrated that the 13C-octanoic acid breath test was an effective diagnostic modality for the measurement of equine delayed gastric emptying. The technique offers advantages to existing methods for clinical investigation, as it is noninvasive, not radioactive, quantitative and requires minimal equipment or training to perform.

Introduction

Delayed gastric emptying may be involved in the pathogenesis of many important conditions in the horse, such as gastric ulceration, equine dysautonomia, postoperative ileus, gastric impaction and idiopathic recurrent colic, and can be difficult to diagnose clinically. A safe, noninvasive, quantitative test for the measurement of this parameter, that could be used repeatedly in clinical cases, would be of great benefit in equine gastroenterology (Merritt 1997). Previous methods that have been used to assess solid phase gastric emptying in the horse have not given direct physiological information, being based on transit measurements of plastic beads (Adams and MacHarg 1985) or radiographic tracking of radiopaque markers (Baker and Gerring 1994). Gastric radiospectrography following intubation with radiolabelled solids (Sojka and Cantwell 1988; Levy and Sojka 1991; Neuwirth 1994; Ringger et al. 1996) is considered to be the optimum diagnostic technique, but has the disadvantages of radiation exposure and the requirement for expensive equipment and user expertise. Acetaminophen absorption has been validated in the horse for the measurement of liquid phase emptying, using radiospectrography (Lohmann et al. 2000). However, solids and liquids empty from the stomach by different mechanisms and rates (Parkman et al. 1995) and measurement of solid phase emptying is preferable for clinical purposes.

The 13C-octanoic acid breath test (13C-OABT) was recently validated for the measurement of equine solid phase gastric emptying (GE) using radiospectrography (Sutton et al. 2002a). This stable isotope breath test was found to be accurate for GE measurement in healthy horses. Following ingestion of a 13C-octanoate labelled meal, the 13C tracer leaves the stomach without being metabolised. After entry of the chyme into the small intestine, the tracer is then absorbed rapidly and undergoes hepatic oxidation, leading to production of 13CO$_2$, which is exhaled after exchange with the bicarbonate pool (Bach and Babayan 1982). Since these postgastric events are constant in nature, the rate of change of the 13CO$_2$:CO$_2$ ratio in respiratory breath provides an indirect measure of solid phase GE, as this is the rate-limiting stage (Ghoos et al. 1993).

The 13C-OABT has also been validated using radiospectrography for the measurement of gastric emptying of solids in man (Ghoos et al. 1993; Duan et al. 1995; Ziegler et al. 1996; Choi et al. 1998; Delbende et al. 1998) and is an important diagnostic tool for disorders of the upper gastrointestinal tract in preterm and young children (Veereman-Wauters et al. 1996; van den Driessche et al. 1999), adults and critical care patients (Ritz et al. 2001).

The specific objective of this research was to validate the 13C-OABT against radiospectrography in horses with significantly delayed gastric emptying, using a model of atropine-induced gastroparesis.

*Author to whom correspondence should be addressed.
gastroparesis. This validation was necessary in order to establish accuracy of the test prior to diagnostic use in equine clinical cases for quantitative diagnosis of gastroparesis.

Materials and methods

Subjects

Eight mature horses (5 Quarter Horses, 3 Thoroughbreds) from the Texas A&M University research herd were used in this study, with a median age of 11.5 years (mean 13.3, range 7–25 years) and median bodyweight 520.0 kg (mean 507.4, range 424.5–530.0 kg). These animals had no historical or physical evidence of gastrointestinal disease and biochemical and haematological parameters lay within the reference ranges. All subjects were maintained outdoors on a low 13C diet of ad libitum alfalfa hay only, for at least 2 weeks prior to each experiment, to ensure constant basal metabolic production of 13CO2.

Study design and protocol

Gastric emptying rate of a standard test meal was measured twice in each horse, after randomised treatment with either atropine or saline. The i.v. bolus of saline or atropine was administered via a preplaced jugular catheter, immediately after ingestion of the test meal was completed. A 13C-OABT was performed on each occasion, together with a concurrent radiocintigraphic study when GE was delayed. Paired tests were separated by a period of at least 7 days. A standard atropine dose of 0.055 mg/kg i.v. was used to induce gastroparesis. This dosage was determined by a pilot study, in which the minimum standard dose of atropine necessary to produce a significant delay in GE without causing apparent abdominal pain was investigated. Analysis of reference scintigraphic data collected by the authors from the same population showed that it would be necessary in the present study to extend scintigraphic t½ to approximately 3.2 h (mean + 1.005(3.5.d.)) in order to delay emptying rate significantly. In the pilot study, a dose of 0.025 mg/kg atropine was insufficient to cause this delay, but the higher dose of 0.035 mg/kg i.v. was found to be effective.

The study was designed to allow paired comparison of gastric function data after randomised saline or atropine administration, using the 13C-OABT. The design also allowed correlation of the breath test technique with scintigraphy for the measurement of GE in horses known to have a significant delay in emptying rate. The study was approved by the Texas A&M University Laboratory Animal Care Committee (Animal Use Protocol 2001-35).

Test meal composition

The test meal consisted of 150 g crimmed oats, 100 g bran, 200 ml water and 2 dual-labelled egg yolks. For the combined test, approximately 1 mg/kg 13C-octanoic acid (Octanoic acid-1-13C, minimum 99 atom % 13C) and 20 mCi 99mTc technetium sulphur colloid (Sulphur Colloid)2 were added to 2 egg yolks, which were baked in a microwave oven until firm and thoroughly mixed into the test meal. The radiopharmaceutical was omitted when the breath test alone was performed. Food was withdrawn 14 h before the start of the test to ensure that the stomach was empty.

13C-octanoic acid breath test

Expiratory air was sampled using a modified Aeromask3 and 250 ml Quintron4 breath collection bag with a unidirectional valve. This technique was rapid and well tolerated, and has been validated previously (Sutton et al. 2002a). Breath samples were stored in duplicate in 1 ml Exetainer5 tubes, prior to stable isotope analysis. Three basal breath samples were collected 60, 15 and 0 min before test meal ingestion (-60, -15, 0 min), and thereafter at 15 min intervals for 8 h, then 30 min intervals for a further 4 h.

Measurement of sample 13CO2 content: A continuous flow isotope ratio mass spectrometer (IRMS; PDZ Europa ABCA6 was used to measure the total CO2 content and 13C abundance of each sample, by comparison with a calibrated 5% CO2 in nitrogen standard gas. Poor expiratory samples of below 0.5% CO2 were rejected for data analysis. The 13CO2:12CO2 ratio of each sample was measured relative to the international limestone standard, and expressed as the δ13C value: δx = ((Rx - Rs)/Rs) x 1000, where Rs and Rx are the 13C:12C atomic ratio of the standard and sample, respectively. Quality control specimens were sampled after each 5 breath samples, with an acceptable s.d. for δ13C of 0.2 per run. After subtraction of the average 13C-abundance of the 3 baseline (predose) breath samples, the δ13C ratio of each sample was converted to absolute units (parts per million excess 13C). Data were then expressed as percentage dose recovery (PDR) of the administered isotope per hour. This latter calculation used the formula for resting VCO2 described by Orr et al. (1975), derived from body mass.

Gastric radiocintigraphy

Each subject was maintained in the nuclear medicine room for the duration of the test and serial left and right gastric scintigraphs were obtained at 15 min intervals, until the radioactive counts/30 s interval in the region of interest had decreased to less than 10% of that at time zero. The first scintigraph was taken immediately after ingestion of the test meal and atropine administration had been completed. Using a dedicated nuclear medicine imaging computer7, regions of interest were hand-drawn and the total counts in the gastric region recorded for each time point. These counts were decay-corrected to time 0.

Calculation of gastric emptying indices

Radioisotopic test data: Counts in the left gastric region of interest were plotted against time as the relative retention of radioactivity after decay correction (Fig 2). The human GE model developed by Siegel et al. (1988) was then used to fit a modelled curve to the data, from which indices of GE were calculated:

\[
y(t) = 1 - 1(1 - e^{-kt})^b
\]

where \(y(t)\) is the fractional meal retention at time \(t\) (expressed in hours) and \(k\) is the rate of exponential decay of the final phase of the curve i.e. the GE rate per h. \(\beta\) is a rate constant determined by the extrapolated y-intercept of the initial portion of the curve. From this, the scintigraphic lag phase \(T_{lag}\) prior to exponential GE was calculated. \(T_{lag} = \ln \beta/k\) where \(\beta>1\) indicates an initial lag
period prior to emptying and $\beta<1$ indicates rapid early emptying. The scintigraphic half-emptying time ($t_{1/2s}$) was calculated from equation 2:

$$t_{1/2s} = -\ln(1 - 2^{-1/\beta})/k$$ (2)

This value is equal to the time at which the area under the modelled emptying curve demonstrates loss of half of the administered radioactive dose.

13C-OABT data: Data were plotted as PDR/h against time, and once again, indices of gastric emptying were derived using a modelled curve based on human breath test data (Ghoos et al. 1993):

$$y = ab^t e^{-ct}$$ (3)

where y is the percentage of the 13C dose recovered in breath/h; t is time in hours; and a, b and c are regression constants. The breath test gastric half-emptying time, $t_{1/2b}$, is equivalent to the time at which the area under the cumulative 13C recovery curve demonstrates recovery of half the administered isotopic dose. This was calculated using a Microsoft Excel^8 function:

$$t_{1/2b} = \text{Gammmainv}(0.5; b + 1; 1/e)$$ (4)

For the breath test, the lag phase, t_{lagb}, is equivalent to division of the rate constants: b/c.

Curve fitting and calculation of constants was performed by nonlinear least squares regression analysis using Microsoft Excel Solver^8. The above models have been shown previously to have good approximation to gastric emptying function in horses. Further information about the modelling techniques is available in the cited references and in Sutton et al. (2002a).

Statistical analysis

A paired t test was used to determine the effect of randomised atropine vs. saline administration on mean breath test $t_{1/2b}$. Where assumption requirements were met, 2 sample t tests were used to compare means in independent groups of observations. A Wilcoxon rank sum test was used for this purpose when there was inequality of variance. Significance was set at $P<0.05$ in each case.

Validation of 13C-OABT vs. scintigraphy: The relationships between the GE indices obtained by the 2 diagnostic modalities were evaluated by Pearson correlation and then linear regression. The relationship between $t_{1/2b}$ and $t_{1/2s}$ was investigated for linearity, and for normal distribution and variability of the residuals. The s.e. (mean Y given X) and 95% CI of the regression line were determined using the formula of Bland (1995). Bland Altman statistics were used to evaluate the mean bias between the two techniques for measurement of gastric $t_{1/2}$ (Bland and Altman 1995, 1999) and 95% confidence limits were established.

Validity of the 13C-OABT for detection of delayed gastric emptying: The concurrent scintigraphic and breath test GE data collected in this study was pooled with comparable data from healthy untreated individuals in the same population, which had been collected and reported previously (Sutton et al. 2002a). A cut-off point was determined for scintigraphic $t_{1/2}$ in the untreated group (mean + 1.645 (s.d.)) above which $t_{1/2s}$ was described to be delayed. The sensitivity and specificity of the breath test for detection of delayed gastric emptying in the entire data set ($n = 21$) as compared to the optimum method of scintigraphy was then investigated.

Results

Effect of atropine on gastric emptying rate

The effects of randomised i.v. atropine (0.035 mg/kg) vs. saline administration on exhaled tracer recovery in 8 horses, following ingestion of the 13C-octanoic acid-labelled test meal, are presented in Figure 1. Mean ± s.d. breath test $t_{1/2}$ values for the atropine and saline treatments were $6.76 ± 1.65$ and $2.52 ± 0.35$ h, respectively. The differences between the paired observations were normally distributed and significant (mean difference = $4.23 ± 1.60$ h, $n = 8$, $P<0.001$). The calculated 99% confidence interval (CI) range for the mean difference excluded zero (2.26 to 6.21 h), confirming that the 13C-OABT was sufficiently sensitive to detect the atropine-induced delay in gastric emptying.

Mean ± s.d. scintigraphic $t_{1/2}$ after atropine in this study was $4.75 ± 1.60$ h ($n = 8$). A Wilcoxon rank sum test showed that this value was significantly delayed relative to directly comparable scintigraphic data collected previously from 11 healthy untreated individuals in the same population ($P<0.01$; Sutton et al. 2002a).

Intravenous atropine administration was followed in all individuals by immediate absence or reduction of intestinal borborygmi, tachycardia and pupil dilatation. The tachycardia was used to monitor the effect of the given dose of atropine, with an average return to resting heart rate of approximately 2.5 h. Intestinal borborygmi returned to original frequency and volume approximately 10 h after atropine, and this was similar to the mean time to first defaecation. No overt signs of abdominal discomfort were seen in any individual.

<table>
<thead>
<tr>
<th>TABLE 1: Gastric emptying indices determined by concurrent radioscentigraphy and 13C-OABT in 8 horses after ingestion of a standard dual-labelled meal, followed by induction of temporary gastroparesis using atropine 0.035 mg/kg bw</th>
<th>Modality</th>
<th>Parameter</th>
<th>Mean</th>
<th>s.d.</th>
<th>Range</th>
<th>Sample</th>
<th>CV%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastric</td>
<td>$t_{1/2s}$ (h)</td>
<td>4.75</td>
<td>1.60</td>
<td>2.75–8.12</td>
<td>n = 8</td>
<td>33.68</td>
<td></td>
</tr>
<tr>
<td>radioscentigraphy</td>
<td>t_{lagb} (h)</td>
<td>3.64</td>
<td>0.89</td>
<td>2.05–4.12</td>
<td>n = 7</td>
<td>21.98</td>
<td></td>
</tr>
<tr>
<td>13C-OABT</td>
<td>$t_{1/2b}$ (h)</td>
<td>6.76</td>
<td>1.65</td>
<td>4.01–9.48</td>
<td>n = 8</td>
<td>24.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>t_{lagb} (h)</td>
<td>5.63</td>
<td>1.22</td>
<td>3.17–6.91</td>
<td>n = 7</td>
<td>21.67</td>
<td></td>
</tr>
</tbody>
</table>

$t_{1/2s}$ = calculated gastric half-emptying time (scintigraphic / breath test); t_{lagb} = duration of the calculated lag phase (scintigraphic/breath test); CV% = coefficient of interindividual variation.
Correlation between the 13C-OABT and radioscintigraphy for measurement of delayed gastric emptying

A typical example of the results of a combined scintigraphic and 13C-OABT study in one individual with atropine-induced gastroparesis is shown in Figure 2. Both diagnostic modalities revealed a lag phase before apparent passage of the dual-labelled meal into the small intestine. This pattern of isotope movement was seen in 6/8 individuals, with a constant rate of scintigraphic GE after an initial lag phase. In the remaining 2 individuals, GE proceeded slowly from the start of the test without an obvious scintigraphic lag phase, even after a second dose of atropine (total dose of 0.07 mg/kg bwt) was given to these individuals. The mean gastric emptying indices in the 8 subjects after atropine administration are presented in Table 1. Scintigraphic $t_{1/2}$ was calculated in 7/8 individuals using images collected from the left side of the horse. In the remaining individual, it was necessary to use the geometric mean value (based on the square-root of the product of the left and right side counts) due to prolonged activity in the right region of interest; t_{lag} calculations were not included for this horse, due to modelling inaccuracies.

A linear relationship was present between the 2 techniques for calculation of $t_{1/2}$ (Fig 3), with a normal residual distribution, and a Pearson correlation coefficient of 0.867 (95% CI = 0.417–0.976, P<0.01). The 95% upper and lower confidence intervals for the best regression line and its equation (1) are presented in Figure 3. Omitting the outlier seen in Figure 3, the best fit equation is given by equation (2):

$$Y = 1.640 + 1.029x$$

$$r = 0.944, 95\% CI = 0.663–0.992, n = 7, P<0.001$$

For the subjects in which it was calculable (n = 7), a positive correlation was also found between the 2 techniques for measurement of t_{lag} (r = 0.764, P<0.05).

Bland Altman statistics were used to investigate the nature of the mean bias between the techniques for measurement of $t_{1/2}$:

After removing the single outlier shown in Figure 3, the mean difference was plotted against average combined value for $t_{1/2}$ and t_{lag}, together with the 95% confidence intervals and 95% limits of agreement (Fig 4). The mean bias was 1.78 ± 0.38 h (95% CI = 1.24–2.33 h; 95% limits = 0.63–2.93 h; n = 7). After confirming normal distribution and homoscedasticity of the data, a 2 sample t test showed that the mean difference (t_{lag}) after atropine was not significantly different in this study to that measured previously in 11 individuals from the same population with normal emptying rate.

Validity of 13C-OABT for measurement of delayed gastric emptying

Using comparable, normally distributed scintigraphic data from healthy untreated individuals (n = 11) in the same population (Sutton et al. 2002), a cut-off of 3.151 h was calculated below which 99.95% (mean t_{lag} + t0.005(s.d.)) of population t_{lag} would be expected to lie. For the purpose of determining sensitivity and specificity values for breath test data in relation to concurrent scintigraphic data, values for t_{lag} above this cut-off were described as ‘delayed’ GE. Using this scintigraphic cut-off to indicate delayed GE, a breath test $t_{1/2}$ in the range 5.55–5.71 h had a sensitivity of 1.00 for delayed gastric emptying, with a specificity of 0.92, and positive and negative predictive values of 0.89 and 1.00 in an observed prevalence of 0.38 (n = 21). Although based on a small sample, a breath test $t_{1/2}$ of greater than 5.55 h in the combined study populations would be expected to represent delayed GE.

Discussion

In this study, the 13C-octanoic acid breath test was shown to be sufficiently sensitive to detect atropine-induced changes in equine solid phase GE rate. In addition, a significant positive correlation was found between the 13C-OABT and the standard technique of radioscintigraphy for the measurement of gastric $t_{1/2}$ in a population of horses proven to have significantly delayed gastric emptying (n = 8). The mean bias between the tests for calculation of $t_{1/2}$ was not significantly different between this group of horses with delayed emptying and that measured previously in normal

Fig 1: Mean percentage dose recovery (PDR/h) ± s.d. of 13C in the breath after ingestion of the 13C-octanoic acid labelled test meal at time 0, followed by immediate saline or atropine injection in 8 horses. The test was performed twice in each horse (n = 16) in randomised order, separated by an interval of at least one week. Mean saline and atropine $t_{1/2}$ values were significantly different (P<0.001) with no overlap in the 99% CI range.

Fig 2: Results of simultaneous 13C-octanoic acid breath test (right y-axis) and gastric radioscintigraphy (left y-axis) in one horse, following intravenous administration of atropine at time 0. Both tests demonstrate a lag phase before movement of the ingested labelled meal into the small intestine. Scintigraphic and breath test $t_{1/2}$ calculated from the modelled curves were 4.72 and 6.01 h, respectively.
coexisting individuals (Sutton et al. 2002a). These results suggested that the 13C-OABT is a valid diagnostic tool for the measurement of delayed GE of solids, producing accurate quantitative data even when this parameter is significantly prolonged. Using a cut-off value of 5.55 h for t$_{1/2}$, the breath test had excellent sensitivity, specificity and negative and positive predictive values for delayed gastric emptying in the combined study population when compared to the scintigraphic standard.

The mean bias observed between the 2 diagnostic modalities for calculation of t$_{1/2}$ (1.78 ± 0.58 h) was thought to be due to the postgastric handling of the 13C-octanoic acid. After the rate-limiting GE event has occurred, the medium chain fatty acid must be absorbed and processed by the liver before entry of the 13C tracer into the bicarbonate pool and excretory enrichment with 13CO$_2$ (Bach and Babayan 1982). Ghoos et al. (1993) found t$_{1/2}$B to have a mean bias of 1.10 h when compared to t$_{1/2}$ in man. The same researchers found that this delay factor corresponded closely to the half-time for absorption and oxidation of 13C-octanoic acid after direct intraduodenal placement of the tracer (Ghoos et al. 1993). Gastroscopic intraduodenal administration of 13C-octanoic acid has also been performed in a small sample of horses (n = 3) and has previously been reported to have an empirical half-time of mean ± s.d. 1.70 ± 0.10 h (Sutton et al. 2002a). This latter value supports the theory that the observed lag between the diagnostic modalities for determination of t$_{1/2}$ is due to the postgastric handling of the triglyceride.

Use of a standard correction factor for the 13C-OABT assumes a uniformity for absorption, metabolism and excretion of the tracer between individuals. Although intra-individual reproducibility has been shown to be high, the homogeneity of these factors in man has been questioned (Choi et al. 1997). However, the accuracy and reproducibility of the 13C-OABT has been confirmed in several large trials by reference to gastric scintigraphy (Choi et al. 1998; Delbende et al. 1998). Inter- and intra-individual repeatability of the 13C-OABT in ponies has been shown to be high (Wyse et al. 2001). The mean intermodality bias for t$_{1/2}$ reported here was also relatively constant with no discernible effects due to age or body mass. Available data therefore appear to confirm that the technique is valid over a wide range of emptying times for diagnostic use in horses.

In this study, delayed gastric emptying was modelled by the administration of atropine (0.035 mg/kg) after meal consumption in healthy horses. This model has been used widely in both equine (Doherty et al. 1998; Lohmann et al. 2002) and human medicine (Imbimbo et al. 1990; Rashid and Bateman, 1990), although the specific effects of atropine on equine gastric motility have not been reported. Using an acetaminophen absorption test, Doherty et al. (1998) reported that 0.025 mg/kg bwt atropine caused a significant delay in liquid gastric emptying rate in ponies. However, this dose was inadequate to delay solid phase emptying in this study, and dosage was increased to 0.035 mg/kg bwt. This dose delayed GE significantly in 6/8 subjects, but a second treatment (0.035 mg/kg bwt) was required in the 2 remaining individuals. Hence, a variation was shown to exist in an individual’s sensitivity and gastric response to atropine. Signs of abdominal pain were not seen even at the higher combined dose of 0.07 mg/kg bwt. This was in contrast to previous studies in which doses of 0.044 mg/kg bwt atropine (Ducharme and Fubini 1983) and even topical ophthalmic atropine preparations (Williams et al. 2000) have been found to cause abdominal pain in ponies.

Atropine administration caused noteworthy changes to the appearance of the scintigraphic gastric emptying profiles. In all individuals, radioactive counts in the gastric region of interest continued to increase for the first 15 min of the study, before reaching plateau. One such example is seen in Figure 2. This phenomenon was probably due to rapid disruption of oesophageal motility by the atropine, resulting in delayed oesophageal transit of residual radioactive ingesta. The muscularis externa of the caudal third of the equine oesophagus comprises smooth rather than striated muscle fibres (Sisson 1975) and manometric studies have shown that normal peristaltic velocity in this region is reduced, and contraction time increased, when compared to the proximal regions (Stick et al. 1983; Clark et al. 1987). In reported in vitro work, atropine effectively abolished the smooth muscle component of oesophageal contraction in guinea pig, rat and human tissue by postganglionic muscarinic-cholinergic blockade (Kerr et al. 1995; Halma et al. 1996; Storr et al. 2000) and oesophageal transit is significantly slowed in human patients with parasympathetic nerve dysfunction (Cunningham et al. 1991). Hence, the contractility of the terminal smooth muscle segment of the equine oesophagus is likely to have been significantly inhibited by the administration of atropine.

In 3/8 cases, left gastric counts continued to increase for 60
min after meal ingestion. In addition to delayed oesophageal transit in these animals, this appeared to result from movement of radioactive ingesta from the right to left gastric regions, perhaps due to increased gastric compliance. Lidums et al. (2000) showed that atropine administration in man resulted in increased gastric compliance, with a delay in recovery of postprandial proximal gastric tone and a consequent decrease in motility. Atropine is also known to reduce the postprandial antral manometric motility index (Parkman et al. 1999) and this is the main mechanism by which it delays gastric emptying, as coordinated antral pressure activity is required for the trituration of solid food and subsequent expulsion of solids and liquids from the stomach (Becker and Kelly 1983; Camilleri et al. 1985). The combination of these factors may have resulted in the movement of radioactive ingesta from distal to proximal stomach in the atropinised horses in this study. Maintenance of canine gastric tone is known to require vagal input (Azpiroz and Malagelada 1987), and the scintigraphic findings in this study provide some evidence that cholinergic input is also involved in the control of equine gastric compliance.

The 13C-OABT is noninvasive, safe and well tolerated by equidae. It is also quantitative, nonsubjective and does not require special skills to perform (Perri et al. 1998). Having been validated against radionucligraphy for the measurement of delayed gastric emptying, it is hoped that this stable isotope breath test will have wide potential research and clinical applications. Use of the test would be beneficial in cases of recurrent and chronic colic (Hillyer and Mair 1997; Mair and Hillyer 1997), particularly in cases of gastric neoplasia (Mair and Hillyer 1991; McKenzie et al. 1997), gastric dilatation (Edwards 1993) or pyloric stenosis (Church et al. 1986). In addition, quantitative GE data would be helpful in the diagnosis and management of chronic grass sickness cases (Merritt 1997) and of any case requiring prekinetic therapy. Further knowledge of the potential role of disordered gastric emptying in conditions such as gastroduodenal ulceration in both foals (Becht and Byars 1986) and mature individuals (Berschneider et al. 1999) may also be beneficial. Currently, the 13C-OABT is being used to investigate the effect of pharmacological agents on equine GE (Sutton et al. 2002b) and that of different feeding regimens (Geor et al. 2001).

In this study, subjects were maintained on alfalfa hay alone to minimise possible error caused by variation in basal 13CO2 abundance in breath. With hindsight, the signal produced by the quantity of 13C-enriched tracer used was sufficient to overcome the requirement to control the natural 13C dietary intake prior to testing. Further collation and analysis of test results should allow the currently time-consuming protocol for sample collection to be optimised, to reduce sampling duration and frequency. Stored samples remain stable for at least 60 days (Schoeller et al. 1977) and may be safely sent to diagnostic centres for analysis. The number of commercial and institutional analytical centres for stable isotope breath tests is continuing to increase and dedicated veterinary machines are likely in the near future.

Acknowledgements

Financial support was gratefully received from the Link Equine Colic Research Fund at Texas A&M University Veterinary School. David Sutton is a Horserace Betting Levy Board research training scholar. The authors thank Dr Jorg Steiner and Professor David Williams of the Gastrointestinal Laboratory, College of Veterinary Medicine, Texas A&M University, for the provision of facilities and technical support. Sheila Gumminger, Jennifer Hanke, Donna Hanover, Elizabeth Stewart, Vickie Weir and Sam Wigington are acknowledged for their expert technical assistance.

References

Manufacturers' addresses

13Mee Inc., Bemee Road, Miamisburg, Ohio, USA.
133IS-US Inc., Bedford, Massachusetts, USA.
13Quintron Instrument Company, Milwaukee, Wisconsin, USA.
13Labco Ltd., High Wycombe, Buckinghamshire, UK.
13PXD Europa Ltd, Sandbach, Cheshire, UK.
13Nuclear Mac, Scientific Imaging, Littleton, Colorado, USA.
13Microsoft Corporation, One Microsoft Way, Redmond, USA.

*Received for publication: 8.2.02
Accepted: 30.5.02