
Copyright © 2009 The Authors

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

Content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s)

When referring to this work, full bibliographic details must be given

http://eprints.gla.ac.uk/45444

Deposited on: 30 September 2013
MACRO AND FINANCIAL MARKETS:
The memory of an elephant?

Karim Abadir and Gabriel Talmain
Background, REStud 2002:

- Model and solution:
 - Micro-founded macro model.
 - Standard RBC + heterogeneity: drop “representative firm” assumption.
 - General Equilibrium yields explicit dynamic equation for GDP etc.
Background, REStud 2002:

- Model and solution:
 - Micro-founded macro model.
 - Standard RBC + heterogeneity: drop “representative firm” assumption.
 - General Equilibrium yields explicit dynamic equation for GDP etc.

- When \(\exists \) heterogeneity, aggregation \(\Rightarrow \) long-memory; e.g. Robinson (1978), Granger (1980), and TS lit.

- But in economics, \(\exists \) an inherent nonlinearity. Decompose GDP as
 \[
 Y \equiv Y_1 + Y_2 + \cdots = e^{\log Y_1} + e^{\log Y_2} + \cdots \neq e^{\log Y_1 + \log Y_2 + \cdots}
 \]
• The result is a new auto-correlation function (ACF) ρ_τ:

![Graph of ACF](image)

with different macropolicy implications.
• The result is a new auto-correlation function (ACF) ρ_τ:

![ACF graph]

with different macropolicy implications.

• But if \exists integration, what about the modification of co-integration?
1 UIP and forward premium puzzle

- Fisher (1930): “speculation” equates expected returns after conversion to the same currency (UIP); e.g.
 - £1 invested in domestic (UK) bond yields £(1 + I_t) at maturity; vs.
 - £1 invested in foreign (US) bond converted into $1/S_t, which yield $\left(1 + I_t^*\right) / S_t = £(1 + I_t^*) S_{t+1}/S_t$ at maturity.

- Define $i := \log (1 + I)$, $s := \log S$, and
 $$r_{t+1} := \Delta s_{t+1} + i_t^* - i_t,$$

as the excess return from investing in the foreign asset. Then, $E_t [r_{t+1}] = 0$ and r_{t+1} should not be predictable.
• Typical empirical implementation: regress r_{t+1} on the forward premium $(f_t - s_t)$, where f and s are the forward and spot rates in logs:

$$r_{t+1} = \alpha + \beta (f_t - s_t) + u_{t+1},$$

where α is the average risk premium and β is the informational content of the forward premium.

- UIP hypothesis implies $H_0: \alpha = 0$ and $\beta = 0$.
- If one believes $f_t = E_t [s_{t+1}]$, then $(f_t - s_t) < 0$ indicates that the US$ should depreciate.
- Routine finding: $\beta < 0$. As more US$ depreciation is expected, higher returns are actually made on the US$!

 Investors are ready to pay more for an asset which, according to their expectations, should have become less attractive!

Running this regression with our data (3-month rates on US$ and UK£ deposits in London and 3-month forward rate)

\[
\hat{r}_{t+1} = -0.0157 - 3.26 (f_t - s_t)
\]

t-ratio \ (-3.67) \ (-6.14)

HAC t \ [-2.85] \ [-2.90]

where HAC = heteroskedastic and autocorrelation-consistent,

Durbin-Watson statistic : 0.65

ARCH(7) test, \ F(7, 242) : 24.10 \ {0.0\%}

RESET (omitted nonlinearities), \ F(1, 255) : 9.66 \ {0.2\%}
• Scatter plot of data

\[r_{t+1} = -0.0157 - 3.2615(f_t - s_t) \]
\[R^2 = 0.1283 \]

• For years, it has defied economic logic to find such a result: how could investors’ expectations be so systematically wrong? Or are they?!
2 Solution to the puzzle: coping with non-linear long-memory

- Co-movements vs. own dynamics.
- Incomplete modelling of dynamics can make the estimation of co-movements biased and inconsistent.
- Example (just an illustration): consider autoregressive process

\[y_t = \alpha y_{t-1} + \beta x_t + u_t, \]

with \(u_t = \rho u_{t-1} + \varepsilon_t \) and \(\varepsilon_t \sim \text{IID}(0, \sigma^2). \)

Running OLS on the first equation only \(\implies \) biased and inconsistent estimators; e.g. Maddala and Rao (1973, Ecta).

- Usual approaches:
 - GLS on the augmented first equation; or
error correction mechanism (ECM), autoregressive distributed lag (ADL)

\[y_t = (\alpha + \rho) y_{t-1} - \alpha \rho y_{t-2} + \beta x_t - \beta \rho x_{t-1} + \varepsilon_t, \]
estimating

\[y_t = a_1 y_{t-1} + a_2 y_{t-2} + a_3 x_t + a_4 x_{t-1} + e_t \]
then testing for the restriction

\[a_1 = \frac{a_2 a_3}{a_4} - \frac{a_4}{a_3}. \]
— error correction mechanism (ECM), autoregressive distributed lag (ADL)

\[y_t = (\alpha + \rho) y_{t-1} - \alpha \rho y_{t-2} + \beta x_t - \beta \rho x_{t-1} + \varepsilon_t, \]

estimating

\[y_t = a_1 y_{t-1} + a_2 y_{t-2} + a_3 x_t + a_4 x_{t-1} + e_t \]

then testing for the restriction

\[a_1 = \frac{a_2 a_3}{a_4} - \frac{a_4}{a_3}. \]

• Long-memory times series models: very persistent time series ("Joseph effect").

• Problem of ECM/ADL for data with long memory: too many lags.

• How about the GLS route?
• We would like to estimate the relation

\[z_t = \tilde{z}_t + u_t, \quad t = 1, 2, \ldots T, \]

where the \(T \times 1 \) vector \(\tilde{z} = X\beta \) is the “fundamental” value of \(z \), but \(z \) and \(\tilde{z} \) (hence possibly \(u \)) have long memory which needs to be accounted for. A possible 2-step procedure (à la GLS):

− decompose the autocorrelation matrix of \(z \) as \(R = LL' \), where \(L \) is lower-triangular and invertible;
− the transformed data \(L^{-1}z \) and \(L^{-1}\tilde{z} \) do not contain long memory and can be regressed by traditional methods.
• Unfortunately, estimating \(\mathbf{R} \) requires estimating \(T - 1 \) parameters: same as infeasible GLS!

Solution: estimate the ACF of \(z \), using a variant of the functional form in Abadir and Talmain (2002, R E Stud)

\[
\rho_\tau \approx \frac{1 - a [1 - \cos (\omega \tau)]}{1 + b \tau^c},
\]

with only 4 parameters to fit. (Note: denominator controls decay of memory.)
UIP example: fit is excellent for s

![Actual vs fitted ACF of the spot rate $\$-\pounds$](image_url)
- The estimated $T \times T$ correlation matrix is then
\[
\begin{pmatrix}
1 & \hat{\rho}_1 & \hat{\rho}_2 & \cdots & \hat{\rho}_{T-2} & \hat{\rho}_{T-1} \\
\hat{\rho}_1 & 1 & \hat{\rho}_1 & \cdots & \cdots & \hat{\rho}_{T-2} \\
\hat{\rho}_2 & \hat{\rho}_1 & \cdots & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \ddots & \hat{\rho}_1 & \hat{\rho}_2 \\
\hat{\rho}_{T-2} & \cdots & \cdots & \hat{\rho}_1 & 1 & \hat{\rho}_1 \\
\hat{\rho}_{T-1} & \hat{\rho}_{T-2} & \cdots & \hat{\rho}_2 & \hat{\rho}_1 & 1
\end{pmatrix}
\]
- Find the Cholesky decomposition (matlab) $\hat{\mathbf{R}} = \hat{\mathbf{L}}\hat{\mathbf{L}}'$; and
- calculate $\mathbf{s}^{\text{acf}} = \hat{\mathbf{L}}^{-1}\mathbf{s}$ and $\mathbf{f}^{\text{acf}} = \hat{\mathbf{L}}^{-1}\mathbf{f}$.
The scatter plot of the transformed data is a nice spherical cloud.
and the regression with transformed data becomes

\[\hat{r}_{t+1}^{\text{acf}} = 0.00582 + 0.0604 \left(f_t^\text{acf} - s_t^\text{acf} \right) \]

\[
\begin{align*}
\text{t-ratio} & \quad (0.14) \quad (0.05) \\
\text{HAC t} & \quad [0.19] \quad [0.04]
\end{align*}
\]

Durbin-Watson statistic : 2.20

ARCH(7) test, \(F(7, 242) : 6.54 \ \{0.0\%\} \)

RESET (omitted nonlinearities), \(F(1, 255) : 0.82 \ \{36.6\%\} \).
3 Stock market application

- Unit roots?! (NB: unit root = permanent memory and no mean-reversion to any regular pattern or trend!)
- How about Stock indices?
- Jegadeesh and Titman (1993 and 2001, J Fin) find momentum;
- De Bondt and Thaler (1985 and 1987, J Fin) find long cycles;
– Jegadeesh and Titman (1993 and 2001, J Fin) find momentum;
– De Bondt and Thaler (1985 and 1987, J Fin) find long cycles;

• GE theory: long-run proportionality relationship between the aggregate real value of firms and GDP. On a balanced growth path:
 – real interest rate is a function of capital/output, which is constant
 ⇒ rate at which future aggregate profits are discounted is fixed;
 – but share of aggregate profits in GDP is constant;
 – hence the discounted stream of future profits (i.e. capitalized value of the stock market) is proportional to GDP.
– Jegadeesh and Titman (1993 and 2001, J Fin) find momentum;
– De Bondt and Thaler (1985 and 1987, J Fin) find long cycles;

• GE theory: long-run proportionality relationship between the aggregate real value of firms and GDP. On a balanced growth path:
 – real interest rate is a function of capital/output, which is constant
 ⇒ rate at which future aggregate profits are discounted is fixed;
 – but share of aggregate profits in GDP is constant;
 – hence the discounted stream of future profits (i.e. capitalized value of the stock market) is proportional to GDP.

• Empirically-testable version: log of stock market index (S&P500) corrected for inflation, s_t, should be in a long-term proportionality with the log of real GDP, y_t.
• Error-correction model of s_t on y_t,

$$
\Delta s_t = \alpha + (\beta_1 \Delta s_{t-1} + \cdots + \beta_m \Delta s_{t-m}) + (\gamma_0 \Delta y_t + \cdots + \gamma_n \Delta y_{t-n}) - \delta (s_{t-1} - y_{t-1}) + \delta_1 y_{t-1} + \varepsilon_t.
$$

- The term $-\delta (s_{t-1} - y_{t-1}) + \delta_1 y_{t-1}$ is the ECM.
- It represents the long-run ‘equilibrium’ relationship between s and y:

$$
s_e = \left(1 + \frac{\delta_1}{\delta}\right) y_e, \quad \delta \neq 0.
$$

- H_0: $\delta_1 = 0$ for long-run proportionality between S_e and Y_e.
- Define $d_{t-1} := s_{t-1} - s_e$ as the deviation of s_{t-1} from its long-term value s_e.
- ECM: this deviation will pull s_t back towards its long-term equilibrium value by δd_{t-1}, where $\delta > 0$.
• For S&P500 over 1958-2000, we obtained the regression

\[
\Delta s_t = -0.728 + 0.539 \Delta s_{t-4} + 0.380 \Delta s_{t-6} \\
(-2.33) (4.35) (2.83)
\]

\[
+ 3.11 \Delta y_t - 1.72 \Delta y_{t-1} + 1.84 \Delta y_{t-2} - 1.15 \Delta y_{t-6} \\
(4.30) (-2.41) (2.58) (-1.77)
\]

\[-0.112 (s_{t-1} - y_{t-1}) + 0.0396 y_{t-1} \\
(-2.11) (0.92)
\]

where the t-ratios are in parentheses, and we have \(R^2 = 57.5\% \),

\[
\text{AR(2) test, } F(2, 32) : 0.43 \{65.4\%\}
\]

\[
\text{ARCH(1) test, } F(1, 32) : 0.17 \{68.1\%\}
\]

\[
\text{RESET, } F(1, 33) : 1.36 \{25.3\%\}
\]

• \(H_0: \delta_1 = 0 \) is supported, but:
by the end of the period, 1995-2000, the fit is poor;
the coefficient of y_{t-1} is unstable and H_0 would be rejected on a sample ending in 1994;
including more lags of Δs in the regression worsens rather than improves stability, while not improving the fit.

The recursive parameter estimates are...
• Remember memory?!

– Fit the ACF of s;
run the regression with transformed variables over 1960-2000

\[\Delta s_{t}^{\text{acf}} = -0.363 + 2.52 \Delta y_{t}^{\text{acf}} - 1.41 \left(s_{t-1}^{\text{acf}} - y_{t-1}^{\text{acf}} \right) - 0.301 y_{t-1}^{\text{acf}} \]

\[(-0.27) \quad (3.67) \quad (-10.0) \quad (-0.49) \]

where \(R^2 = 76.3\% \),

AR(2) test, \(F(2, 35) : 2.47 \{ 9.9\% \} \)

ARCH(1) test, \(F(1, 35) : 1.72 \{ 19.9\% \} \)

RESET, \(F(1, 33) : 0.72 \{ 40.2\% \} \).
$-H_0: \delta_1 = 0$ is supported throughout the sample
– deviations from cycles around the long-run fundamental values are restored well within a year;
– good fit.
4 Extensions

- The two-step procedure is not the most efficient estimation method:
 - we provide formulae for full GLS, QMLE, etc.;
 - but qualitative results remain unchanged.

Example: QMLE case. For any given R, define

$$
\hat{\beta}_R \equiv \left(X' R^{-1} X \right)^{-1} X' R^{-1} z
$$

as a function of R. The QMLE of R is obtained by maximizing

$$
- \log \left| \left(z - X \hat{\beta}_R \right)' R^{-1} \left(z - X \hat{\beta}_R \right) \right|
$$

with respect to the parameters of the ACF: the optimization of the joint likelihood (for R and β) now depends on only 4 parameters that determine the whole autocorrelation matrix R. Once the optimal value \hat{R} of R is obtained, the MLE of β is $\hat{\beta} \equiv \hat{\beta}_{\hat{R}}$.