Numerical modelling of climate change impacts on Saint-Lawrence River tributaries

Verhaar, P.M., Biron, P.M., Ferguson, R.I. and Hoey, T.B. (2010) Numerical modelling of climate change impacts on Saint-Lawrence River tributaries. Earth Surface Processes and Landforms, 35(10), pp. 1184-1198. (doi:10.1002/esp.1953)

Full text not currently available from Enlighten.

Publisher's URL: http://dx.doi.org/10.1002/esp.1953

Abstract

The impacts of climate-induced changes in discharge and base level in three tributaries of the Saint-Lawrence River, Québec, Canada, are modelled for the period 2010–2099 using a one-dimensional morphodynamic model. Changes in channel stability and bed-material delivery to the Saint-Lawrence River over this period are simulated for all combinations of seven tributary hydrological regimes (present-day and those predicted using three global climate models and two greenhouse gas emission scenarios) and three scenarios of how the base level provided by the Saint-Lawrence River will alter (no change, gradual fall, step fall). Even with no change in base level the projected discharge scenarios lead to an increase in average bed material delivery for most combinations of river and global climate model, although the magnitude of simulated change depends on the choice of global climate model and the trend over time seems related to whether the river is currently aggrading, degrading or in equilibrium. The choice of greenhouse gas emission scenario makes much less difference than the choice of global climate model. As expected, a fall in base level leads to degradation in the rivers currently aggrading or in equilibrium, and amplifies the effects of climate change on sediment delivery to the Saint-Lawrence River. These differences highlight the importance of investigating several rivers using several climate models in order to determine trends in climate change impacts.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Hoey, Professor Trevor
Authors: Verhaar, P.M., Biron, P.M., Ferguson, R.I., and Hoey, T.B.
College/School:College of Science and Engineering > School of Geographical and Earth Sciences
Journal Name:Earth Surface Processes and Landforms
ISSN:1096-9837

University Staff: Request a correction | Enlighten Editors: Update this record