
http://eprints.gla.ac.uk/44842

Deposited on: 25 January 2011
HIGH THROUGHPUT SYNTHESIS OF DIVERSE 2,5-SUBSTITUTED INDOLES USING A TITANIUM CARBENOID BEARING BORONATE FUNCTIONALITY

Calver A. Main, Hanna M. Petersson, Shahzad S. Rahman, Richard C. Hartley*, WestCHEM Department of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK

\[
\text{Ar} \quad \begin{array}{c}
\text{R} \\
\text{Boc}
\end{array}
\begin{array}{c}
\text{N} \\
\text{Boc}
\end{array}
\begin{array}{c}
\text{O} \\
\text{R}
\end{array}
\]

(i) ArI, Pd0
(ii) TFA in DCM
High Throughput Synthesis of Diverse 2,5-Disubstituted Indoles using Titanium Carbenoids Bearing Boronate Functionality

Calver A. Main, a Hanna M. Petersson, a Shahzad S. Rahman b and Richard C. Hartley. * a

a WestCHEM Department of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
b GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex, CM19 5AW

Abstract – A titanium benzylidene complex bearing a boronate group converted resin-bound esters into enol ethers. Suzuki cross-coupling with aryl iodides, followed by cleavage with acid completed the solid-phase synthesis of 2,5-disubstituted N-Boc-indoles. Also reported is the use of tertiary butyllithium and 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane to convert an aryl bromide into an aryl boronate in the presence of a dithiane, with simultaneous reduction of an aryl azide to an amine.

Introduction

The discovery of new lead compounds can be achieved through the synthesis of a large numbers of compounds in parallel, constituting a compound library, followed by high throughput screening. 1 The members of the library should be diverse in structure so as to effectively probe chemical space, but because chemical space is so large, the inclusion of structural features that are often associated with biological activity, known as "privileged structures", 2,3 improves the chances of obtaining a useful lead compound. Once a lead is established, focussed libraries can then be prepared, which may well contain a range of privileged structures. The use of solid-phase synthesis facilitates the preparation of the libraries as it allows automation. 4

Recently, we have developed functionalised titanium carbenoids 5 to prepare benzofurans 2, 6,7 indoles 3, 7 benzothiophenes 4, 8 quinolines 5, 9 cyclic imines 10,11 6 and enantiomerically enriched piperidines 11 7 and 8 from resin-bound esters 1, so that each ester acts as a precursor to a range of privileged structures (Scheme 1). The general strategy involves using titanium carbenoids 9 containing a masked nucleophile to convert acid-stable, resin-bound esters 1 into acid-sensitive enol ethers 10 (Scheme 2). Treatment with mild acid leads to cleavage from resin with concomitant cyclisation to generate bicyclic heteroaromatic compounds 11 with no trace of the site of attachment to resin. The switch to a linker cleaved under orthogonal conditions ensures that any unreacted ester 1 remains attached to the resin and so the products 11 are released in high purity. Barrett and co-workers introduced the term "chameleon catch" to describe this switch in the nature

* Corresponding author: Fax: +44 141 3304888, e-mail: richh@chem.gla.ac.uk

2
of a linker. In theory, it allows greater diversity to arise from each resin-bound ester as other products would be available from cleaving at the ester stage (e.g. carboxylic acids, alcohols etc.).

Scheme 1

One limitation of our original strategy was that no additional diversity was added after the switch of the linker, and we overcame this in the benzofuran series by including a boronate group in the titanium reagent. Suzuki cross-coupling between boronate and a variety of aryl iodides then allowed access to a range of ketones that cyclised upon deprotection in strong acid to give 2,5-disubstituted benzofurans. Aryl iodides react under the conditions used to generate our titanium benzylidene reagents, precluding the introduction of aryl bromide or iodide functionality to the resin by our method. However, immobilisation of the arylboronate component is advantageous as aryl halides are more widely and cheaply available than arylboronates. Therefore, it is surprising that the aryl halide is almost always the immobilised coupling partner for cross couplings in SPS.
We here report a similar strategy for introducing diversity in the indole series. The indole moiety is the archetypal privileged structure, and alkaloids derived from the indole-containing amino acid, tryptophan, are found widely in nature. These include the human 5-hydroxytryptamine (5-HT) hormones, serotonin, which is involved in regulation of the nervous system including neurotransmission, and melatonin, which regulates circadian rhythms and sleep processes. Although, natural indoles are almost invariably 3-substituted, 2-substituted analogues of these hormones are also being investigated as potential therapeutic agents. Other bioactive 2-substituted indoles recently reported include inhibitors of the proteases involved in coagulation e.g. factor VIIa inhibitors, antagonists of G-protein-coupled receptors, anti-angiogenic compounds and inhibitors of endothelin-converting-enzyme. Naturally, new methods for the construction and modification of indole moieties during SPS are continually being reported. However, the combination of intermolecular alkylidenation of an ester group followed by cyclisation to give an indole is unique to us.

Results and Discussion

We chose 5-bromo-2-fluorobenzaldehyde as the starting material for the synthesis of titanium benzylidene complexes, as we reasoned that an amino group could be introduced through SNAr displacement of the fluoride by a suitable nucleophile, the bromide could be replaced by boron
through cross-coupling and the aldehyde would easily be converted into a dithiane. Displacement of fluoride by azide proceeded smoothly to give aldehyde 17, which was then converted into dithiane 18. Reduction of the azide gave aniline derivative 19. This was converted into carbamate 20, which was benzylated to give aryl bromide 21. Miyaura cross-coupling then introduced the boronate in high yield, completing the synthesis of a dithiane 22.24 Treating the dithiane 22 with freshly prepared Takeda reagent,25 Cp$_2$Ti[P(OEt)$_3$]$_2$, gave a titanium carbenoid, presumed to be titanium benzylidene 23. This was used immediately without isolation to benzylidenate resin-bound ester 24, prepared from Merrifield resin and contained within MacroKansTM, which are small porous polypropylene reactors (0.315 meq. of resin per reactor, using of resin with a loading of 1.97 meq. g$^{-1}$) that allow easy handling of the resin in normal glassware. Cleavage of the resulting resin-bound enol ether 25 with acid and cyclisation under our published conditions then gave boronate 26.26 Alternatively, Suzuki cross-coupling between the resin-bound arylboronate 25 and aryl iodides to give enol ethers 27, under conditions optimised previously,14 followed by release and cyclisation gave N-benzyl indoles 28, 29 and 30. Yields are based on the original loading of the Merrifield resin and so are over 5 steps. The products were isolated in high purity without the need for chromatography.
Scheme 4
Scheme 5 Yields based on original loading of Merrifield resin

While N-benzyl indoles can be deprotected to give indoles,27 N-Boc protecting groups are more easily removed.28 Unfortunately, Miyara cross-coupling had failed when amine 19 or primary carbamate 20 were the substrate.29 Presumably, coordination of palladium by the dithiane poisons the catalyst, and this coordination is prevented by the bulky N-benzyl carbamate. In addition to this limitation, we considered that the Miyaura cross-coupling was expensive, even if a cheaper catalysts is used,30 due to the cost of bis(pinacolato)diboron. Consequently, it seemed better to introduce the boron by lithiation and trapping with a borate ester. Under optimised conditions, treatment of aryl bromide 18 with 3.1 eq. of tert-butyllithium and quenching with borate 33 gave amine 34 after crystallisation. In spite of the modest yield, the ¹H NMR spectrum of the crude mixture following work up appeared to contain no other aromatic compounds. 2 of the 3 eq. of tert.-butyllithium are required to convert the aryl bromide moiety into an aryllithium and to destroy the resulting tert-butyl bromide.31 Organolithiums are known to attack the terminal nitrogen of aryl azides and alkyl azides to give 1-aryl-3-alkyltriazenes and 1,3-dialkyltriazenes, respectively,32 so dilithiated triazenes 31 and 32 are likely to be intermediates. 1-Aryl-3-alkyltriazenes decompose in acid to the corresponding anilines with loss of nitrogen and generation of an alkyl carbocation, and the reaction is particularly fast when the carbocation is stabilised.33 A similar decomposition appears to be induced by the borate 33. Interestingly, 1,3-disubstituted triazenes have been used as electrophile-cleavable linkers in solid-phase synthesis, but trisubstituted triazenes are much more versatile and popular.34 Although the reaction of allyl azide with aryllithiums, followed by acid-induced decomposition, is a known method for preparing anilines,35 the generation of anilines from aryl azides using tert-butyllithium is new.

Boc protection of amine 34 gave carbamate 35, which was then silylated to give a suitable substrate 36 for the generation of a titanium benzylidene 37 under Takeda conditions. Again, once
generated, the titanium reagent was used immediately to benzylidenate resin-bound ester 24, and cleavage with concomitant cyclisation was achieved under mild conditions7,36 to give the N-Boc indole 39. Suzuki cross-couplings between the intermediate boronate 38 and a variety of aryl and heteroaryl iodides gave enol ethers led to the production of 2,5-substituted indoles 40-43 in good purity without the need for chromatography. However, cross-coupling with 1-iodo-4-nitrobenzene conditions gave a 5:1 mixture of the expected product 44 and a compound 45, presumably arising from Buchwald coupling37,38 which could not be avoided.
Scheme 6

With good conditions in hand for the alkylidensation, cross-coupling, cleavage sequence, we decided to prepare a library of 96 indoles 49 (Scheme 8), using smaller amounts of resin in MiniKans™, which are smaller porous polypropylene reactors (93 meq. of resin per MiniKan™, using Merrifield resin with a loading of 2.0 meq. g⁻¹). 8 resin-bound esters 46 were prepared and for each ester, 13 MiniKans™ containing the same resin-bound ester were alkylidenated together to give enol ethers 47. One MiniKan™ from each batch was subjected to the cleavage conditions to give the boronates 48 in good yield and purity, with the exception of 48H, which was very impure. The identity of the boronate products 48 was confirmed by ¹H NMR spectroscopy of the crude material from cleavage following evaporation of solvent. Enol ether 47G, which has two N-Boc groups, yielded a mono-Boc compound 48G'. It is believed that the N-Boc on the indole is retained, based on the chemical shift of the tert-butyl group, and the obvious stability of the other N-Boc indoles 48A-F. It is noteworthy that indoles containing Lewis basic sites (48D-G') could be made using reagent 37, but it would appear that the 1,2,4-oxadiazole unit has limited stability to the reaction conditions.
Scheme 8

12 batches of the 8 resin-bound enol ethers 47A-H contained in MiniKans™ were each subjected to Suzuki cross-coupling with a different aryl or heteroaryl iodide, followed by cleavage from resin in separate vessels to give indoles 49. The crude yields and purities are presented in Table 1. The library members were identified using reversed phase HPLC, with diode array UV detection (DAD-UV) and evaporative light scattering detection (ELSD) and MS analysis. The purity values for the library members were determined using summed diode array UV detection (DAD-UV) between the wavelengths of 210 nm and 350 nm. In 13 examples (in bold), the identity of the library members were further confirmed by 1H NMR spectroscopy following purification by reversed phase HPLC. It is noteworthy that even when the yield and purity were low, as was the case for indole 49Fh, sufficient material could be obtained for identification in this way, giving confidence that other compounds in the library were correctly identified by reversed phase
HPLC/DAD-UV/ELSD/MS. Thus, in 79 cases the desired indole was produced (82% success). Surprisingly, di-Boc compounds 49G were produced, and deprotection of the aliphatic amino group did not dominate. As would be expected from the poor quality of boronate 48H, there were few products arising from enol ether 47H. The enol ethers 47 had efficiently cross coupled with a wide range of aryl and heteroaryl iodides including both electron-rich substrates a-c and electron-poor substrates i-l. It is not clear why some derivatives of 3-iodothiophene were not formed, but 3-iodopyrazole 39 g appears to be a poor substrate for Suzuki cross coupling. Indeed, there are no reports of palladium-catalysed cross couplings with this substrate in the literature.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>66 (89)</td>
<td>72 (97)</td>
<td>78 (81)</td>
<td>53 (70)</td>
<td>64 (88)</td>
<td>72 (94)</td>
<td>68 (71)</td>
<td>*</td>
</tr>
<tr>
<td>b</td>
<td>62 (69)</td>
<td>55 (77)</td>
<td>35 (78)</td>
<td>61 (84)</td>
<td>67 (47)</td>
<td>74 (70)</td>
<td>59 (60)</td>
<td>*</td>
</tr>
<tr>
<td>c</td>
<td>53 (79)</td>
<td>48 (80)</td>
<td>37 (83)</td>
<td>56 (69)</td>
<td>57 (77)</td>
<td>37 (43)</td>
<td>46 (16)</td>
<td>*</td>
</tr>
<tr>
<td>d</td>
<td>*</td>
<td>*</td>
<td>56 (54)</td>
<td>63 (44)</td>
<td>65 (50)</td>
<td>80 (46)</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>e</td>
<td>60 (66)</td>
<td>62 (91)</td>
<td>30 (73)</td>
<td>72 (87)</td>
<td>64 (29)</td>
<td>35 (32)</td>
<td>39 (24)</td>
<td>*</td>
</tr>
<tr>
<td>f</td>
<td>65 (41)</td>
<td>76 (8)</td>
<td>65 (39)</td>
<td>60 (64)</td>
<td>43 (27)</td>
<td>30 (35)</td>
<td>39 (18)</td>
<td>*</td>
</tr>
<tr>
<td>g</td>
<td>57 (36)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>92 (33)</td>
<td>89 (21)</td>
<td>71 (20)</td>
<td>*</td>
</tr>
<tr>
<td>h</td>
<td>50 (70)</td>
<td>73 (64)</td>
<td>41 (59)</td>
<td>65 (100)</td>
<td>52 (48)</td>
<td>41 (13)</td>
<td>57 (43)</td>
<td>39 (84)</td>
</tr>
<tr>
<td>i</td>
<td>58 (21)</td>
<td>49 (55)</td>
<td>48 (15)</td>
<td>62 (41)</td>
<td>59 (18)</td>
<td>40 (35)</td>
<td>*</td>
<td>18 (12)</td>
</tr>
<tr>
<td>j</td>
<td>85 (64)</td>
<td>69 (57)</td>
<td>41 (61)</td>
<td>57 (55)</td>
<td>60 (51)</td>
<td>38 (67)</td>
<td>34 (63)</td>
<td>*</td>
</tr>
<tr>
<td>k</td>
<td>81 (86)</td>
<td>62 (91)</td>
<td>78 (71)</td>
<td>90 (75)</td>
<td>89 (78)</td>
<td>68 (77)</td>
<td>67 (84)</td>
<td>*</td>
</tr>
<tr>
<td>l</td>
<td>45 (91)</td>
<td>74 (91)</td>
<td>51 (94)</td>
<td>76 (86)</td>
<td>64 (64)</td>
<td>48 (70)</td>
<td>42 (13)</td>
<td>*</td>
</tr>
</tbody>
</table>

* MW of product not detected

Conclusion

In summary, we have synthesised new titanium carbenoid reagents bearing a boronate functionality, using a sequence that involved a novel reduction of an aryl azide with tert-butyl lithium. We have demonstrated that this organotitanium reagent can be used for the SPS synthesis of 2,5-disubstituted indoles, and we have exemplified the benzylidenation, Suzuki cross coupling, cleavage-cyclisation sequence for introducing diversity by successfully preparing 79 of the members of a potential 96-member library of indoles.

Experimental
1H and 13C NMR spectra were obtained on a Bruker DPX/400 spectrometer operating at 400 and 100 MHz respectively. All coupling constants are measured in Hz and are uncorrected. DEPT was used to assign the signals in the 13C NMR spectra as C, CH, CH2 or CH3. Mass spectra (MS) were recorded on a Jeol JMS700 (MStation) spectrometer. Infra-red (IR) spectra were obtained on a Perkin-Elmer 983 spectrophotometer. A Golden Gate™ attachment that uses a type IIa diamond as a single reflection element was used so that the IR spectrum of each compound (solid or liquid) could be directly detected without any sample preparation. Column chromatography was carried out on silica gel, 70-230 mesh, or neutral alumina (Brockmann grade III). Tetrahydrofuran and diethyl ether were dried over sodium and benzophenone, and dichloromethane was dried over calcium hydride.

The solid-phase syntheses were carried out using resin derived from commercially available Merrifield resin with the loadings described in the text below and contained in IRORI MacroKans™ (porous polypropylene reactors with an internal volume 2.4 mL, and a pore size of 74 μm) and IRORI MiniKans™ (porous polypropylene reactors with an internal volume 660 μL, and a pore size of 74 μm).

2-Azido-5-bromobenzaldehyde 17. Sodium azide (6.71 g, 103 mmol, 2 eq.) was added to a stirring solution of 5-bromo-2-flourobenzaldehyde 16 (10.5 g, 51.6 mmol, 1 eq.) in DMSO (100 mL) under argon. Reaction mixture was stirred at 50 °C for 6 h. The reaction mixture was then poured into ice water, acidified with concentrated HCl. It was then extracted with DCM (2x), washed with water (2x), dried (MgSO4) and concentrated to give 2-azido 5-bromobenzaldehyde 17 as a yellow solid (10.1 g, 44.8 mmol, 87%); mp: 87-90 °C (yellow needles from PrOH). Rf[SiO2, hexane-DCM (2:1)]: 0.58. \(\nu_{\text{max}} \) (Golden Gate)/cm\(^{-1}\): 1670 (CHO), 2129 (N\(_3\)), 2759 (CH stretch), 2877 (CH stretch). \(\delta \) (400 MHz, CDCl\(_3\)): 7.17 (1H, d, \(J \) 8.6 Hz, H-3), 7.71 (1H, dd, \(J \) 2.4 and 8.6 Hz, H-4), 7.98 (1H, d, \(J \) 2.4 Hz, H-6), 10.28 (1H, s, CHO). \(\delta \) (100 MHz, CDCl\(_3\)): 118.25 (C), 120.75 (CH), 127.94 (C), 131.62 (CH), 137.98 (CH), 141.85 (C), 187.07 (CH). m/z (EI): 227 [M\(^{13}\)Br, 6%], 225 [M\(^{13}\)Br\(^{7}\)Br, 6], 199 [M\(^{13}\)Br\(^{8}\)Br – N\(_2\), 27], 197 [M\(^{13}\)Br\(^{7}\)Br – N\(_2\), 27], 83 (100).

HRMS: 226.9513 and 224.9541. C\(_3\)H\(_4\)O\(^{79}\)BrN\(_3\) requires 226.9518, [M\(^{79}\)Br], and C\(_3\)H\(_4\)O\(^{79}\)BrN\(_3\) requires 224.9538.

2-(2’-Azido-5′-bromophenyl)-1,3-dithiane 18. 1,3-Propanedithiol (6.0 mL, 51 mmol, 1.2 eq.) was added to a solution of 2-azido-5-bromo-benzaldehyde 17 (10.0 g, 44.5 mmol, 1 eq.) and BF\(_3\)OEt\(_2\) (7.0 mL, 55 mmol, 1.2 eq.) in dry toluene (100 mL) under an atmosphere of argon. The reaction mixture was stirred for 2 h. The reaction was then quenched by adding water and was extracted into DCM (2x). Combined organics were washed with 1 M NaOH (2x), water (2x), dried (MgSO4) and
concentrated to give 2-(2'-azido-5'-bromophenyl)-1,3-dithiane 18 (12.8 g, 40.3 mmol, 91%). A small sample was recrystallised from isopropanol to give dithiane 18 as yellow needles; mp 162-164 °C. Rf[SiO2, hexane-DCM (2:1)]: 0.74. νmax(Golden Gate)/cm⁻¹: 2093 cm⁻¹ (N≡), 2135 (N≡), 2898 (CH stretch). δH (400 MHz, CDCl3): 1.86-1.97 (1H, m, Hax-5), 2.14-2.21 (1H, m, Heq-5), 2.91 (2H, dt, J 4.1 and 13.7 Hz, Heq-4 and Heq-6), 3.09 (2H, dt, J 2.4 and 13.5 Hz, Hax-4 and Hax-6), 5.43 (1H, s, H-2), 7.00 (1H, d, J 8.5 Hz, H-3‘), 7.43 (1H, dd, J 2.3 and 8.5 Hz, H-4‘), 7.74 (1H, d, J 2.3 Hz, H-6‘). δC (100 MHz, CDCl3): 24.95 (CH2), 32.13 (CH2), 44.29 (CH), 118.18 (C), 119.25 (CH), 132.08 (C), 132.48 (CH), 135.99 (C). m/z (EI): 317 [M+•(81Br), 20%], 315 [M+•(79Br), 20], 215 [M+•(81Br) – N2 and CH2CHCH2SH, 30], 213 [M+•(79Br) – N2 and CH2CHCH2SH, 30], 83 (100). HRMS: 316.9484 and 314.9503. C10H1081BrN3S2 requires 316.9478, and C10H1079BrN3S2 requires 314.9500. Microanalysis: C, 38.05; H, 3.13; N, 13.08%. C10H1081BrN3S2 requires C, 37.98; H, 3.19; N, 13.29%.

2-(2'-Amino-5'-bromophenyl)-1,3-dithiane 19. 2-(2'-Azido-5'-bromophenyl)-1,3-dithiane 18 (9.46 g, 29.9 mmol, 1 eq.) dissolved into dry THF (150 mL) was added drop-wise to a stirred suspension of LiAlH4 (1.70 g, 44.9 mmol, 1.5 eq.) in dry THF (100 mL) under argon and the mixture was then stirred at rt for 2.5 h. Saturated aqueous NH4Cl was added carefully under argon to quench the excess LiAlH4. The reaction mixture was then extracted into Et2O (2×), washed with water (2×), dried (MgSO4) and concentrated to give amine 459 as a yellow oil (7.99 g, 27.5 mmol, 92%); Rf[SiO2, hexane-DCM (2:1)]: 0.32. νmax(Golden Gate)/cm⁻¹: 1618 (NH2 bend), 2898 (CH stretch), 2931 (CH stretch), 3353 (NH stretch), 3443 (NH stretch). δH (400 MHz, CDCl3): 1.72-1.84 (1H, m, Hax-5), 2.01-2.08 (1H, m, Heq-5), 2.80 (2H, dt, J 4.0 and 13.7 Hz, Heq-4 and Heq-6), 2.94 (2H, dt, J 2.4 and 13.5 Hz, Hax-4 and Hax-6), 4.09 (2H, s, NH2), 5.11 (1H, s, H-2), 6.45 (1H, d, J 8.5 Hz, H-3‘), 7.09 (1H, dd, J 2.3 and 8.5 Hz, H-4‘), 7.34 (1H, d, J 2.3 Hz, H-6‘). δC (100 MHz, CDCl3): 24.60 (CH2), 31.05 (CH2), 46.81 (CH), 109.34 (C), 117.48 (CH), 123.91 (C), 130.06 (CH), 130.87 (CH), 142.54 (C). m/z (EI): 291 [M+•(81Br), 45%], 289 [M+•(79Br), 45], 216 [M+•(81Br) – ‘CH2CHCH2SH, 57], 214 [M+•(79Br) – ‘CH2CHCH2SH, 57], 83 (100). HRMS: 290.9570 and 288.9598. C10H1281BrNS2 requires 290.9573, and C10H1279BrNS2 requires 288.9595. Microanalysis: C, 41.32; H: 4.11; N, 4.70%. C10H1281BrNS2 requires C, 41.38; H, 4.17; N, 4.83%.

2-[2'-(N-Boc-amino)-5'-bromophenyl)]-1,3-dithiane 20. A solution of 2-(2'-amino-5'-bromophenyl)-1,3-dithiane 19 (7.73 g, 26.6 mmol, 1 eq.) and di-tert-butyldicarbonate (6.39 g, 29.3 mmol, 1.1 eq.) in THF (50 mL) was heated under reflux, under argon, for 15 h. After this time, the
reaction mixture was poured into water and extracted into DCM (2x). The combined organics were then washed with water (2x), dried (MgSO₄) and concentrated. Recrystallisation from DCM-hexane (1:6) gave carbamate 20 as a solid (7.26 g, 18.6 mmol, 70%); mp: 127-128 °C. Rf[SiO₂, hexane-DCM (2:1)]: 0.51. νmax(Golden Gate)/cm⁻¹: 1687 cm⁻¹ (C=O), 2929 (CH stretch), 2976 (CH stretch), 3241 (NH stretch), 3323 (NH stretch). δH (100 MHz, CDCl₃): 1.54 (9H, s, 'Bu) 1.86-1.99 (1H, m, Hax-5), 2.17-2.24 (1H, m, Heq-5), 2.94 (2H, dt, J 3.9 and 13.8 Hz, Heq-4 and Heq-6), 3.09 (2H, dt, J 2.3 and 13.5 Hz, Hax-4 and Hax-6), 5.23 (1H, s, H-2), 7.26 (1H, s, NH), 7.39 (1H, dd, J 2.3 and 8.8 Hz, H-4'), 7.54 (1H, d, J 2.3 Hz, H-6') 7.75 (1H, bd, J 8.1 Hz, H-3'). δC (400 MHz, CDCl₃): 25.39 (CH₃), 28.74 (CH₂) 32.22 (CH₃), 48.08 (CH), 81.31 (C), 116.98 (C), 124.65 (CH), 130 (C), 131.60 (CH), 132.38 (CH), 135.83 (C), 153.27 (C=O). m/z (EI): 391 [M⁺(Br), 11 %], 389 [M⁺(Br), 10], 335 [M⁺(Br) – CH₂=C(CH₃)₂, 71], 333 [M⁺(Br) - CH₂=CH(CH₃)₂, 65], 229 [M⁺(Br) – CH₃=C(CH₃)₂ and HSCH=CHCH₂SH, 74], 227 [M⁺(Br) – CH₂=C(CH₃)₂ and HSCH=CHCH₂SH, 72], 57.1 (100). HRMS: 391.0096. C₁₃H₂₀BrNO₂S₂ requires 391.0098. Microanalysis: C, 46.34; H, 5.26; N, 3.57; S: 16.53%. C₁₅H₂₀BrNO₂S₂ requires C, 46.15; H, 5.16; N, 3.59; S,16.43%.

2-[2'-(N-Boc-N-benzylamino)-5'-bromophenyl]-1,3-dithiane 21. NaH (0.38 g, 16 mmol, 1.2 eq.) was added portion-wise to a solution of 2-[2'-(N-Boc-amino)-5'-bromophenyl]-1,3-dithiane 20 (5.14 g, 13.2 mmol, 1 eq.) and benzyl bromide (1.90 mL, 1.4 mmol, 1.2 eq.) in DMF (60 mL) at 0 °C under argon. The reaction mixture was then allowed to warm to rt and stirred for 3 h. After this time, the reaction mixture was carefully poured into iced water and extracted into EtOAc (2x). The combined organics were washed with water (2x), dried (MgSO₄) and concentrated. Recrystallisation from DCM-hexane gave N-benzylcarbamate 21 as a yellow solid (3.37 g, 7.02 mmol, 54%), mp: 155-157 °C. Rf[SiO₂, hexane: DCM (2:1):] 0.46. νmax(Golden Gate)/cm⁻¹: 1687 cm⁻¹ (C=O), 2904 (CH stretch), 2966 (CH stretch). δH (400 MHz, CDCl₃): 1.40 (9H, s, 'Bu) 1.85-1.98 (1H, m, Hax-5), 2.13-2.18 (1H, m, Heq-5), 2.80-3.02 (4H, m, H-4 and H-6), 4.30 (1H, d, J 14.4 Hz, PhCH₃Hβ), 5.13 (1H, s, H-2), 5.25 (1H, d, J 14.1 Hz, PhCH₃Hβ), 6.50 (1H, broad s, H-3'), 7.20 (1H, dd, J 1.6 and 8.3 Hz, H-4'), 7.22-7.35 (5H, m, Ar-H), 7.70 (1H, d, J 2.3 Hz, H-6'). δC (100 MHz, CDCl₃): 25.39 (CH₃), 28.47 (CH₃) 32.49 (CH₃), 32.80(CH₃), 46.04 (CH), 53.75 (CH₂) 81.31 (C), 122.15 (C), 127.93 (CH), 128.84 (CH) 129.32 (CH), 131.43 (CH), 132.04 (CH), 132.82 (CH), 138.18 (C), 138.63 (C), 139.29 (C), 155.35 (C=O). m/z (EI): 481 [M⁺(Br), 5 %], 479 [M⁺(Br), 4], 425 [M⁺(Br) – CH₂=C(CH₃)₂, 24], 423 [M⁺(Br) – CH₂=CH(CH₃)₂, 22], 380 [M⁺(Br) – CO₂C(CH₃)₂, 28], 378 [M⁺(Br) – CO₂C(CH₃)₂, 26], 334 [M⁺(Br) – CH₂=C(CH₃)₂ and 'CH₂Ph, 60], 332 [M⁺(Br) – CH₂=C(CH₃)₂ and 'CH₂Ph, 55], 91.1 (100). HRMS: 481.0566 and 479.0591.
C$_2$H$_{26}^{81}$BrNO$_2$S$_2$ requires 481.0569 and C$_2$H$_{26}^{79}$BrNO$_2$S$_2$ requires 479.0588. Microanalysis: C, 54.75; H: 5.40; N: 3.03; S: 13.42%. C$_2$H$_{26}$BrNO$_2$S$_2$ requires C, 54.99; H, 5.45; N, 2.92; S, 13.35%.

2-[2′-(N-Boc-N-benzylamino)-5′-(4″,4″,5″,5″-tetramethyl-1″,3″,2″-dioxaborolan-2″-yl)-phenyl]- 1,3-dithiane 22. Following the general procedure for Miyaura cross-coupling, a flask charged with PdCl$_2$(dppe) (0.19 g, 0.26 mmol, 3 mol%), KOAc (2.49 g, 25.40 mmol, 3 eq.) and bis(pinacolato)diboron (2.37 g, 9.31 mmol, 1.1 eq.) was flushed with argon for 30 min. DMSO (45 mL) and aryl bromide 21 (4.07 g, 8.47 mmol, 1 eq.) were then added, the solution was degassed for 30 min and then stirred at 80 °C for 26 h. The reaction mixture was cooled to rt and water was added to the flask to induce precipitation. The grey solid was collected through filtration and washed several times with water. The grey solid was then dissolved in EtOAc and a black solid was removed by filtration through celite. Removal of solvent under reduced pressure gave a solid, which was recrystallised from cyclohexane to give the aryl boronate 22 as a pale brown powder (3.99 g, 89%). M.p. 165-168 °C. R$_f$[SiO$_2$, hexane-DCM (1:1)]: 0.33. ν_{max}(Golden Gate)/cm$^{-1}$: 1689 (C=O), 2928 (CH stretch), 2977 (CH stretch). δ_{1H} (400 MHz, CDCl$_3$): 1.32 (12H, s, CH$_3$), 1.37 (9H, s, CH$_3$), 1.87-2.20 (2H, m, H-5), 2.80-3.05 (4H, m, H-4 and H-6), 4.32 (1H, d, J 14.5 Hz, PhCH$_3$HB), 5.22 (1H, s, H-2), 5.23 (1H, d, J 14.8 Hz, PhCH$_3$HB), 6.68 (1H, broad s, H-3′), 7.21-7.23 (5H, m, Ar-H), 7.51 (1H, d, J 7.6 Hz, H-4′), 8.65 (1H, d, J 1.0 Hz, H-6′). δ_c (100 MHz, CDCl$_3$, 353 K): 24.98 (CH$_3$), 25.37 (CH$_3$), 28.25 (CH$_3$), 32.57 (CH$_3$) 46.93 (CH), 54.00 (CH$_2$), 80.58 (C), 83.99 (C), 127.33 (CH), 128.32 (CH), 128.85 (CH), 129.08 (CH), 134.94 (CH), 135.88 (CH), 136.28 (C), 138.48 (C), 142.35 (C), 155.23 (C=O). m/z (EI): 527 (M$^+$, 10%), 471 [M$^+$ – CH$_3$=C(CH$_3$)$_2$, 25], 426 [M$^+$ – CO$_2$C(CH$_3$)$_3$, 55], 380 [M$^+$ – CH$_3$=C(CH$_3$)$_2$ and ‘CH$_2$Ph], 91 (‘CH$_2$Ph, 100). HRMS: 527.2335. C$_{28}$H$_{38}$NO$_3$S$_2$B requires 527.2335. Microanalysis: C, 63.28; H, 7.22; N, 2.77%. C$_{28}$H$_{38}$BNO$_3$S$_2$ requires C, 63.75; H, 7.26; N, 2.66%.

Resin-bound enol ether 25. Cp$_2$TiCl$_2$(0.94 g, 3.8 mmol, 12 eq.), magnesium turnings (0.10 g, 4.1 mmol, 13 eq., predried at 250 °C overnight) and freshly activated 4 Å molecular sieves (0.25 g) were heated, gently, under reduced pressure (0.3 mmHg) for about 1 min and then placed under argon. Dry THF (5 mL) was added followed by dry P(OEt)$_3$ (1.3 mL, 7.6 mmol, 24 eq.). After stirring for 3 h at rt, a solution of the dithiane 22 (0.49 g, 0.95 mmol, 3 eq.) in dry THF (4 mL) was added to the mixture and stirring continued for 15 min. The solution was added to a flask containing resin-bound ester 24 contained in a MacroKan™ [0.315 meq. prepared from 160 mg of Merrifield resin with a loading of 1.97 meq. (chloride) g$^{-1}$] and pre-swollen in THF (6 mL) under argon. After 17 h the reactor was removed from the flask and washed with THF (5×) then
alternately with MeOH and DCM (5×), and finally with MeOH then Et₂O. The reactor containing the resin-bound enol ether 25 was then dried under vacuum.

N-Benzyl-2-phenethyl-5-(4′,4′,5′,5′-tetramethyl-1′,3′-dioxaborolan-2′-yl)indole 26. A MacroKan™ containing the resin-bound enol ether 25 (0.315 meq.) was shaken with trifluoroacetic acid (1%) in DCM (5 mL) for 1.5 h. The solution was removed and the MacroKan™ was washed with DCM (3×). Combined organics were concentrated under reduced pressure. The residue was placed under argon, dissolved in dry DCM (5 mL), and stirred at 0 °C under argon. Trifluoroacetic acid (0.5 mL, 6.5 mmol) was added drop-wise and the mixture was allowed to warm to rt and then stirred for 2 h. After this time, the reaction mixture was poured into saturated aqueous sodium bicarbonate and extracted into DCM (2×). The combined organics were washed with saturated aqueous sodium bicarbonate (2×), dried over magnesium sulfate, and concentrated under reduced pressure to give indole 26 as a brown oil (46 mg, 34%). R₆[SiO₂, hexane: DCM (1:1)]: 0.25. vₚₛ(Golden Gate)/cm⁻¹: 2926 cm⁻¹ (CH stretch), 1351 (B-O). δₜH (400 MHz, CDCl₃): 1.35 (12H, s, 4× CH₃), 2.96 (4H, s, CH₂CH₂Ph), 5.25 (2H, s, CH₂, NCH₂Ph), 6.40 (1H, s, H-3), 6.89 (2H, dd, J 1.8 and 8.0 Hz, ArH), 7.10-7.26 (9H, m, Ar-H), 7.58 (1H, dd, J 1.0 and 8.2 Hz, H-6), 8.12 (1H, s, H-4). δC (100 MHz, CDCl₃): 24.88 (CH₃), 28.63 (CH₂), 34.82 (CH₂), 46.28 (CH₂), 83.33 (C), 100.36 (CH), 108.73 (CH), 125.83 (CH), 126.13 (CH), 127.25 (CH), 127.78 (CH), 128.33 (CH), 128.40 (CH), 128.73 (CH), 137.65 (C), 139.20 (C), 140.56 (C). m/z (EI): 437 (M⁺, 42%), 346 (M⁺⁺ – CH₂Ph, 100). HRMS: 437.2524 (M⁺⁺). C₂⁹H₃₂¹¹BNO₂ requires 437.2526.

N-Benzyl-5-(4′-methylphenyl)-2-phenethylindole 28. Pd(PPh₃)₄ (15 mg, 4 mol%) was added to a stirring suspension of the resin-bound enol ether 25 (0.315 meq.) contained in a MacroKan™, Cs₂CO₃ (0.54 g, 1.7 mmol, 5.3 eq.) and 4-iodotoluene (350 mg, 1.6 mmol, 5.1 eq.), in degassed DMF (15 mL) with H₂O (5.6 µL, 1 eq.) under argon. The suspension was stirred at 80 °C for 17 h. The mixture was allowed to cool and the MacroKan™ was separated from the reaction mixture and washed with 9:1 DMF-H₂O (3×), alternately with MeOH and DCM (3×), and finally with MeOH and Et₂O. The MacroKan™ containing resin-bound enol ether 27 was then dried under vacuum before being cleaved, in the same way as for the synthesis of boronate 26, to give indole 28 as a brown oil (55 mg, 45%). R₆[SiO₂, hexane-DCM (1:1)]: 0.71. vₚₛ(Golden Gate)/cm⁻¹: 1452 (Ar), 2919 (CH stretch). δₜH (400 MHz, CDCl₃): 2.37 (3H, s, CH₃), 2.93-3.02 (4H, m, CH₂CH₂Ph), 5.24 (2H, s, N-CH₂Ph), 6.42 (1H, s, H-3), 6.94 (2H, d, J 8.2 Hz, H-2’ and H-6’), 7.13 (2H, d, J 8.3 Hz, ArH), 7.17-7.28 (9H, m, Ar-H), 7.34 (1H, dd, J 1.7 and 8.5 Hz, H-6), 7.53 (2H, d, J 8.1 Hz, H-3’ and H-5’), 7.78 (1H, d, J 1.5 Hz, H-4). δC (100 MHz, CDCl₃): 21.04 (CH₃), 28.68
Butyllithium 2-[2'-amino-5'-((CH₃)₃C)-3'H,7H,8H-indol-2'-yl]]-1,3-dithiane 34. tert-Butyllithium (69.5 mL, 1.7 M, 118 mmol) was added drop-wise over a period of 1 h 45 min to a
cooled (−80 °C to −89 °C) to a stirred solution of aryl azide 18 (12.1 g, 38.1 mmol) in dry THF (120 mL) under argon ensuring the temperature did not exceed −80 °C. The reaction mixture was stirred for 15 min at −80 °C and 2-isoproxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (25.6 mL, 126 mmol) was added drop-wise over 45 min and the resulting mixture was stirred for 1 h 30 min before being allowed to warm to rt and stirred overnight. Water buffered to pH 7 was added, and the mixture extracted with DCM (3×). The combined organics were washed with water and then brine (3×) and dried (MgSO₄). Removal of solvent under reduced pressure gave a dark brown oil. Crystallisation from pentane and ethyl acetate gave the boronate 34 as a brown solid (4.97 g, 39%). Mp 190 – 193 °C. Rᵣ[SiO₂, DCM/Hexane]: 0.70. νₓₓₓ(Golden Gate)/cm⁻¹: 1607 (Ar), 3402 (NH₃).

δₓ (400 MHz, CDCl₃): 1.23 (12H, s, CH₃), 1.82-1.99 (1H, m, H(eq)-5), 2.09-2.21 (1H, m, H(eq)-5), 2.83 (2H, td, J 4.0 and 13.0 Hz, H(eq)-4 and H(eq)-6), 3.01 (2H, dt, J 2.0 and 13.0 Hz, H(eq)-4 and H(eq)-6), 4.40 (2H, broad s, NH₂), 5.26 (1H, s, H-2), 6.57 (1H, d, J 8.1 Hz, H-3'), 7.48 (1H, dd, J 1.4 and 8.1 Hz, H-4'), 7.63 (1H, d, J 1.3 Hz, H-6'). δₓ (100 MHz, CDCl₃): 24.89 (CH₃), 25.29 (CH₃), 32.00 (CH₂), 49.97 (CH), 83.40 (C), 116.16 (CH), 121.50 (C), 136.21 (CH), 136.29 (CH), 147.82 (C). m/z (EI): 337 (M⁺, 79%), 262 (100), HRMS: 337.1338. C₁₀H₂₃O₂NS₂B requires 337.1341. Microanalysis: C, 57.02; H: 7.17; N: 4.22%. C₁₀H₂₃O₂NS₂B requires C, 56.97; H, 7.17; N, 4.15%.

2-[2'-tert-Butoxycarbonyl-amino-5'- (4' , 5' -tetramethyl-1', 3', 2'-dioxaborolane-2' -yl)-1,3-dithiane 35. A solution of amine 34 (5.81 g, 17.2 mmol) in dry THF (150 mL) and (Boc)₂O (7.89 g, 36.2 mmol) was heated under reflux for 12 h under argon. After this time an additional equivalent of (Boc)₂O (3.75 g) was added and the reaction mixture stirred at reflux for another 24 h. The reaction mixture was then allowed to cool to rt and quenched with water. The mixture was extracted with DCM (2×) and the combined organics washed with water (2×) and dried (MgSO₄). Removal of solvent under reduced pressure gave a yellow solid. Column chromatography eluting with hexane-EtOAc (4:1) gave carbamate 35 as a pale yellow solid (5.41 g, 71%). Mp 99 – 101 °C. Rᵣ[SiO₂, hexane-EtOAc (4:1)]: 0.45. νₓₓₓ(Golden Gate)/cm⁻¹: 1366 (B-O), 1478 (Ar), 1682 (C=O).

δₓ (400 MHz, CDCl₃): 1.32 (12H, s, CH₃), 1.54 (9H, s, 'Bu), 1.91 (1H, tdd, 3.0, 12.5 and 14.1 Hz, H(ax)-5), 2.17 (1H, tdd, J 2.3, 3.9 and 14.2 Hz, H(eq)-5), 2.93 (2H, ddd, J 3.3, 3.9 and 14.4, H(eq)-4 and H(eq)-6), 3.06 (2H, ddd, J 2.3, 12.5 and 14.4 Hz, H(eq)-4 and H(eq)-6), 5.34 (1H, s, H-2), 7.69 (1H, broad s, NH), 7.71 (1H, d, J 1.4 and 8.3 Hz, H-4'), 7.78 (1H, d, J 1.4 Hz, H-6'), 7.96 (1H, d, J 8.3 Hz, H-3'). δₓ (100 MHz, CDCl₃): 24.86 (CH₃), 25.17 (CH₂), 28.40 (CH₃), 31.93 (CH₂), 49.52 (CH), 80.59 (C), 83.73 (C), 85.17 (CH), 135.61 (CH), 135.91 (CH), 139.62 (C), 146.75 (C), 152.75 (C). m/z (EI): 437 (M⁺, 6%), 380 (71), 274 (M⁺, −C(CH₃)₃ and HSCH=CHCH₂SH, 100). HRMS: 437.1866. C₂H₁₅O₂NS₂B requires 437.1867.
2-[2'-Aminosilylcarbamate-5'-(4", 5"-tetramethyl-1", 3", 2"-dioxaborolan-2"-yl]-1,3-dithiane 36. A solution of lithium disopropylamide (1.80 mL, 2.0 M, 3.4 mmol) was added drop-wise to a cooled stirred solution of carbamate 35 (1.22 g, 2.8 mmol) and TMSCl (0.42 mL, 3.4 mmol) in THF (30 mL) at −78 °C under an inert atmosphere of argon. The reaction mixture was then allowed to warm to rt over 45 min and was allowed to stir for a further 1 h at RT. After this time, the solvent was removed in vacuo and ether (30 mL) was added. The resulting white solid was filtered off and the ethereal solution concentrated to furnish target N-silylcarbamate 36 as an off-white solid (1.40 g, 98%). δH (400 MHz, CDCl3): 0.24 (9H, s, Si-CH3), 1.33 (12H, s, CH3), 1.54 (9H, s, 'Bu), 1.92-2.05 (1H, m, Hα-5), 2.14-2.22 (1H, m, Heq-5), 2.88-3.07 (4H, m, Heq-4, Heq-6, Hax-4 and Hax-6), 5.21 (1H, s, H-2), 6.94 (1H, d, J 7.7 Hz, H-3'), 7.65 (1H, dd, J 1.3 and 7.7 Hz, H-4'), 8.06 (1H, d, J 1.3 Hz, H-6'). δC (100 MHz, CDCl3): 0.60 (CH3), 23.52 (CH3), 23.82 (CH2), 27.05 (CH3), 30.59 (CH2), 48.18 (CH), 79.26 (C), 82.39 (C), 119.35 (C), 126.95 (C), 134.27 (CH), 134.58 (CH), 138.28 (C), 151.41 (C). m/z (EI): 509 (M**, 3%), 452 [(M** – C(CH3)3 and CO2 60)], 346 (M**, – C(CH3)3 and HSCH=CHCH2SH, 100). HRMS: 509.2263. C32H30O4NS2BSi requires 509.2261.

Resin-bound enol ether 38. Resin-bound enol ether was prepared in the same way as resin bound enol ether 25, but using dithiane 36 instead of dithiane 22 with resin-bound ester 24 contained in a MacroKan™ [0.325 meq. prepared from 170 mg of Merrifield resin with a loading of 1.91 meq. (chloride) g⁻¹].

N-Boc-2-phenylethyl-5-(4", 5"-tetramethyl-1", 3", 2"-dioxaborolan-2"-yl)-indole 39. A MacroKan™ containing the resin-bound enol ether 25 (0.325 meq.) was shaken with trifluoroacetic acid (1%) in DCM (5 mL) for 1.5 h. The solution was removed and the reactor was washed with DCM (3x). Combined organics were concentrated under reduced pressure gave indole 39 as a purple solid (81 mg, 56%). Mp 101-104 °C. Rf [SiO2, DCM]: 0.76. νmax(Golden Gate)/cm⁻¹: 1734 (C=O), 2976 (CH). δH (400 MHz, CDCl3): 1.36 (12H, s, CH3), 1.68 (9H, s, 'Bu), 3.01 (2H, t, J 8.4 Hz, H-2'), 3.32 (2H, t, J 8.4 Hz, H-1'), 6.33 (1H, s, H-3), 7.18-7.29 (5H, m, Ar-H), 7.69 (1H, dd, J 0.9 and 8.4 Hz, H-6), 7.92 (1H, d, J 0.9 Hz, H-4), 8.04 (1H, d, J 8.4 Hz, H-7). δC (100 MHz, CDCl3): 24.93 (CH3), 28.27 (CH3), 31.76 (CH2), 35.20 (CH2), 83.65 (C), 83.95 (C), 107.64 (CH), 114.94 (CH), 126.00 (CH), 127.06 (CH), 128.38 (CH), 128.43 (CH) 128.90 (C), 129.74 (CH), 138.69 (C), 141.47 (C), 141.59 (C), 150.52 (C). m/z (EI): 447 (M**, 19%), 391 (M** – CH2=C(CH3)2, 44), 300 (82), 83 (100). HRMS: 447.2577. C32H30O4NB requires 447.2571.
N-Boc-5-(4'-methylphenyl)-2-(2"-phenylethyl)indole 40. Pd(PPh)$_3$)$_4$ (14.4 mg, 4 mol%) was added to a stirring suspension of resin-bound enol ether 25 (0.325 meq.) contained in a MacroKan$^\text{TM}$, Cs$_2$CO$_3$ (511 mg, 1.5 mmol, 4.6 eq.) and 4-iodotoluene (338 mg, 1.55 mmol, 4.8 eq.), in degassed DMF (15 mL) with H$_2$O (5.6 μL, 0.31 mmol, 0.96 eq.) under argon. The mixture was stirred at 80 °C for 5 h. Cleavage in the same way as for indole 39 gave indole 40 as a brown solid (74.1 mg, 53%). Mp 75-78 °C. R$_f$ [SiO$_2$, DCM]: 0.76. ν_{max}(Golden Gate)/cm$^{-1}$: 1468 (Ar), 1731 (C=O), 2929 (CH), 2077 (CH), 3025 (Ar-H). δ_H (400 MHz, CDCl$_3$): 1.63 (9H, s, 'Bu), 2.33 (3H, s, CH$_3$), 2.97 (2H, t, J 8.4 Hz, CH$_2$Ph), 3.28 (2H, t, J 8.4 Hz, CH$_2$CH$_2$Ph), 6.32 (1H, s, H-3), 7.14-7.27 (5H, m, Ar-H), 7.22 (2H, d, 8.8 Hz, Ar-H), 7.40 (1H, dd, J 2.0 and 8.8 Hz, H-6), 7.47 (2H, d, J 8.8 Hz, Ar-H), 7.56 (1H, d, J 2.0 Hz, H-4), 8.03 (1H, d, J 8.8 Hz, H-7). δ_C (100 MHz, CDCl$_3$): 21.12 (CH$_3$), 28.32 (CH$_3$), 32.52 (CH$_2$), 35.25 (CH$_2$), 83.93 (C), 107.57 (CH), 115.80 (CH), 118.06 (CH), 122.71 (CH), 126.07 (CH), 127.14 (CH), 128.45 (CH), 128.47 (CH), 129.78 (CH), 129.87 (C), 135.85 (C), 135.91 (C), 136.49 (C), 138.84 (C), 141.52 (C), 142.31 (C), 150.62 (C). m/z (EI): 411 (M"**, 34%), 355 (M"** – CH$_2$=C(CH$_3$)$_2$, 56), 264 (95), 290 (100). HRMS: 411.2199. C$_{28}$H$_{29}$O$_2$N requires 411.2198.

N-Boc-5-(4'-methoxyphenyl)-2-(2"-phenylethyl)indole 41. In the same way, but using 4-iodoanisole (365 mg) as the aryl iodide in the Suzuki cross coupling gave indole 41 as a dark brown solid (74.3 mg, 54%). Mp 80-83 °C. ν_{max}(Golden gate)/cm$^{-1}$: 1468 (Ar), 1731 (C=O), 2929 (CH). δ_H (400 MHz, CDCl$_3$): δ 1.61 (9H, s, 'Bu), 2.95 (2H, t, J 7.8 Hz, CH$_2$Ph), 3.26 (2H, t, J 7.8 Hz, CH$_2$CH$_2$Ph), 3.76 (3H, s, OCH$_3$), 6.29 (1H, s, H-3), 6.89 (2H, d, J 2.0 Hz, H-3' and H-5'), 7.09-7.25 (5H, m, Ph) 7.34 (1H, dd, 2.0 and 8.8 Hz, H-6), 7.48 (2H, d, J 2.0 Hz, H-2' and H-6'), 7.52 (1H, d, J 2.0 Hz, H-4), 8.03 (1H, d, J 8.8 Hz, H-7). δ_C (100 MHz, CDCl$_3$): 28.31 (CH$_3$), 31.83 (CH$_2$), 35.24 (CH$_2$), 55.40 (CH$_3$), 82.87 (C), 107.43 (CH), 114.20 (CH), 115.79 (CH), 117.79 (CH), 122.66 (CH), 126.05 (CH), 128.26 (CH), 128.43 (CH), 128.64 (CH), 128.79 (C), 133.27 (C), 134.51 (C), 134.58 (C), 140.43 (C), 141.22 (C), 149.51 (C), 157.70 (C). Mass (m/z): LRMS (El’): 427 (M"**, 52%), 371 (M"** – CH$_2$=C(CH$_3$)$_2$, 87), 280 (100). HRMS: 427.2148. C$_{28}$H$_{29}$O$_2$N requires 427.2147.

N-Boc-2-(2"-phenylethyl)-5-(2"-thiophenyl)indole 42. In the same way, but using 2-iodothiophene (322 mg) as the aryl iodide in the Suzuki cross coupling gave indole 42 as a dark brown solid (81 mg, 62%). Mp 108-110 °C. ν_{max}(Golden gate)/cm$^{-1}$: 1470 (Ar), 1726 (C=O), 2854 (CH), 2925 (CH). δ_H (400 MHz, CDCl$_3$): 1.68 (9H, s, 'Bu), 3.03 (2H, t, J 8.0 Hz, CH$_2$Ph), 3.33 (2H, t, J 8.0 Hz, CH$_2$CH$_2$Ph), 6.35 (1H, s, H-3), 7.02-7.08 (1H, m, H-4"), 7.18-7.31 (7H, m, H-5", H-3" and Ph) 7.51 (1H, dd, 2.0 and 8.8 Hz, H-6), 7.66 (1H, d, J 2.0 Hz, H-4), 8.07 (1H, d, J 8.8 Hz, H-7). δ_C (100 MHz, CDCl$_3$): 28.25 (CH$_3$), 31.76 (CH$_2$), 35.12 (CH$_2$), 84.05 (C), 107.45 (CH),
115.90 (CH), 117.08 (CH), 121.76 (CH), 122.61 (CH), 124.08 (CH), 126.03 (CH), 127.94 (CH), 128.40 (CH), 128.42 (CH), 129.30 (C), 129.80 (C), 135.99 (C), 141.39 (C), 142.56 (C), 145.16 (C), 150.41 (C). m/z (El): 403 (M**, 43%), 347 (M** – CH₂=C(CH₃)₂, 67], 212 (100). HRMS: 403.1607. C₂₉H₂₅O₃NS requires 403.1606.

N-Boc-2-(2'-phenylethyl)-5-(3"-pyridyl)indole 43. In the same way, but using 3-iodopyridine (312 mg) as the aryl iodide in the Suzuki cross coupling gave indole 43 as its TFA salt (105 mg) as a dark brown solid. A portion of the salt (40.0 mg) was treated with NaHCO₃ and extracted into DCM. The combined organics were concentrated under reduced pressure to give the indole 43 (27.6 mg, 58%) as a brown oil. v max (KBr)/cm⁻¹: 1496 (Ar), 1733 (C=O), 2854 (CH), 2974 (CH). δ H (400 MHz, CDCl₃): 1.64 (9H, s, Bu), 2.98 (2H, t, J 7.8 Hz, CH₂Ph), 3.30 (2H, t, J 7.8 Hz, CH₂CH₂Ph), 6.35 (1H, s, H-3), 7.12-7.23 (5H, m, Ph) 7.40 (1H, dd, 2.0 and 8.8 Hz, H-6), 7.58 (1H, d, J 2.0 Hz, H-4), 7.84-7.87 (1H, m, H-5"), 8.12 (1H, d, J 8.8 Hz, H-7), 8.52 (1H, d, J 8.6 Hz, H-4"), 8.68 (1H, d, J 2.2 and 8.6 Hz, H-6"), 9.04 (1H, d, J 2.2 Hz, H-2"). δ c (100 MHz, CDCl₃): 27.25 (CH₂), 30.74 (CH₂), 34.12 (CH₃), 83.15 (C), 106.41 (CH), 115.13 (CH), 117.30 (CH), 121.51 (CH), 125.03 (CH), 126.74 (CH), 127.39 (C), 128.14 (CH), 128.31 (CH), 130.21 (C), 137.14 (C), 139.21 (CH), 140.31 (CH), 141.72 (C), 140.07 (C), 142.73 (CH), 143.42 (C), 149.93 (C). m/z (El): 398 (M**, 21%), 342 [M** – CH₂=C(CH₃)₂, 48], 251 (65), 207 (100), HRMS: 398.1996. C₂₉H₂₅O₃NS requires 398.1994.

N-Boc-5-(4"-nitrophenyl)-2-(2'-phenylethyl)indole 44 and 1-[2'-(N-Boc- 4"-nitrophenylamino)-5"-(4"-nitrophenyl)phenyl]-4-phenylbutan-2-one 45. In the same way, but using 1-iodo-4-nitrobenzene (391 mg) and heating at 80 °C for only 2 h in the Suzuki cross-coupling, gave a 5:1 mixture of indole 44 and ketone 45 (97 mg, 68%) after cleavage. Pure samples of each compound were obtained by chromatography (DCM). Indole 44 was isolated as a yellow solid. R f [SiO ₂, DCM]: 0.85. v max(Golden Gate)/cm⁻¹: 1341 (NO₂), 1516 (NO₂), 1595 (Ar), 1734 (C=O), 2926 (CH), 2968 (CH). δ H (400 MHz, CDCl₃): 1.63 (9H, s, CH₃), 2.97 (2H, t, J 7.9 Hz, CH₂Ph), 3.28 (2H, t, J 7.9 Hz, CH₂CH₂Ph), 6.33 (1H, s, H-3), 7.13-7.22 (5H, m, Ar-H), 7.41 (1H, dd, J 1.9 and 8.7 Hz, H-6), 7.61 (1H, d, J 1.7 Hz, H-4), 7.67 (2H, d, J 8.8 Hz, H-2" and 6"), 8.09 (1H, d, J 8.7 Hz, H-7), 8.19 (2H, d, J 8.8 Hz, H-3" and 5"). δ c (100 MHz, CDCl₃): δ 28.30 (CH₃), 31.77 (CH₂), 35.16 (CH₃), 84.39 (C), 107.50 (CH), 116.57 (CH), 119.43 (CH), 122.73 (CH), 124.10 (CH), 126.14 (CH), 128.38 (CH), 127.71 (CH), 128.42 (CH), 130.03 (C), 133.26 (C), 136.93 (C), 141.29 (C), 143.04 (C), 146.67 (C), 148.24 (C), 150.34 (C). m/z (El): 442 (M**, 16%), 386 (M** – CH₂=C(CH₃)₂, 63), 295 (86), 57 (100), HRMS: 442.1893. C₂₉H₂₅O₂N₂ requires 442.1893. Ketone 45 was isolated as an orange solid. R f [SiO ₂, DCM]: 0.48. v max(Golden Gate)/cm⁻¹: 1342 (NO₂), 1517 (NO₂), 1592 (Ar), 1717 (C=O), 2924 (CH). δ H (400 MHz, CDCl₃): δ 1.38 (9H, s, CH₃), 2.71 (4H, m,
One procedure was employed for all 8 resin-bound esters containing alternately one N-Boc-2-(2'-phenylethyl)-5-(4", 5"-tetramethyl-1"-yl)-indole 48A.

N-Boc-2-(2'-phenylethyl)-5-(4", 5"-tetramethyl-1"-yl)-indole 48A. One MiniKan™ containing resin-bound enol ether 47A (93 µeq.) was shaken with trifluoroacetic acid (1%) in DCM (5 mL) for 1.5 h. The solution was removed and the reactor was washed with DCM (3×). Combined organics were concentrated under reduced pressure gave indole 47A (23.7 mg, 57%). 1H NMR data as reported for indole 39 above.

N-Boc-2-propyl-5-(4', 5'-tetramethyl-1', 3', 2'-dioxaborolan-2'-yl)indole 48B. In the same way, one MiniKan™ containing resin-bound enol ether 47B (93 µeq.) gave indole 48B (21.8 mg, 61%). δH (400 MHz, CDCl₃): 1.03 (2H, t, J 7.2 Hz, CH₂CH₂), 1.37 (12H, s, CH₃), 1.67 (9H, s, 'Bu),
2.93–2.98 (4H, m, CH$_2$CH$_2$), 6.34 (1H, s, H-3), 7.65 (1H, dd, J 1.2 and 8.4 Hz, H-6), 8.06 (1H, d, J 1.2 Hz, H-4), 8.21 (1H, d, J 8.4 Hz, H-7).

N-Boc-2-(3'-phenylpropyl)-5-(4", 5"-tetramethyl-1", 3", 2"-dioxaborolan-2"-yl)indole 48C. In the same way, one MiniKan™ containing resin-bound enol ether 47C (93 µeq.) gave indole 48C (25.7 mg, 60%). δH (400 MHz, CDCl$_3$): 1.33 (12H, s, CH$_3$), 1.66 (9H, s, 'Bu), 2.04 (2H, qn, J 7.4 Hz, CH$_2$CH$_2$CH$_2$), 2.73 (2H, t, J 7.4 Hz, CH$_2$CH$_2$CH$_2$Ph), 3.03 (2H, t, J 7.4 Hz, CH$_2$Ph), 7.19–7.29 (5H, m, ArH), 6.34 (1H, s, H-3), 7.67 (1H, dd, 1.6 and 8.4 Hz, H-6), 7.93 (1H, d, J 1.6 Hz, H-4), 8.08 (1H, d, J 8.4 Hz, H-7).

N-Boc-2-[2'-(3"-pyridyl)]-5-(4", 5"'-tetramethyl-1"", 3"", 2"'-dioxaborolan-2"'-yl)indole 48D. In the same way, one MiniKan™ containing resin-bound enol ether 47D (93 µeq.) gave indole 48D (24.2 mg, 58%). δH NMR (400 MHz, DMSO-d$_6$): 1.21 (9H, s, 'Bu), 1.24 (12H, s, CH$_3$), 2.76 (2H, t, J 7.2 Hz, CH$_2$CH$_2$), 3.17 (2H, t, J 7.2 Hz, CH$_2$CH$_2$), 6.32 (1H, s, H-3), 7.12 (1H, dd, 1.6 and 8.4 Hz, H-6), 7.22 (1H, d, J 1.6 Hz, H-4), 7.25 (1H, broad dd, J 4.8 Hz and 7.7 Hz, H-5"), 7.62 (1H, d, J 8.4 Hz, H-7), 7.67 (1H, broad d, J 7.8 Hz, H-4"), 8.41 (1H, broad s, H-2"), 8.43 (1H, broad d, 4.7 Hz, H-6").

N-Boc-2-(3'-phenoxypropyl)-5-(4", 5"-tetramethyl-1", 3", 2"-dioxaborolan-2"-yl)indole 48E. In the same way, one MiniKan™ containing resin-bound enol ether 47E (93 µeq.) gave indole 48E (17.5 mg, 42%). δH (400 MHz, CDCl$_3$): 1.36 (12H, s, CH$_3$), 1.68 (9H, s, 'Bu), 2.19 (2H, qn, J 7.4 Hz, CH$_2$CH$_2$CH$_2$), 3.20 (2H, t, J 7.2 Hz, CH$_2$CH$_2$CH$_2$OPh), 4.04 (2H, t, J 7.4 Hz, CH$_2$OPh), 6.37 (1H, s, H-3), 6.88–6.95 (3H, m, ArH), 7.27–7.29 (2H, m, ArH), 7.67 (1H, dd, 1.2 and 8.4 Hz, H-6), 7.92 (1H, d, J 1.2 Hz, H-4), 8.07 (1H, d, J 8.4 Hz, H-7).

N-Boc-2-[2'-(3",4"-dimethoxyphenyl)ethyl]-5-(4"", 5""-tetramethyl-1""", 3""", 2""'-dioxaborolan-2""'-yl)indole 48F. In the same way, one MiniKan™ containing resin-bound enol ether 47F (93 µeq.) gave indole 48F (27.1 mg, 58%). δH (400 MHz, CDCl$_3$): 1.36 (12H, s, CH$_3$), 1.67 (9H, s, 'Bu), 2.96 (2H, t, J 7.2 Hz, H-2"), 3.30 (2H, t, J 7.4 Hz, H-1"), 3.81 (3H, s, OCH$_3$), 3.86 (3H, s, OCH$_3$), 6.32 (1H, s, H-3), 6.71 (1H, d, J 1.6 Hz, H-2"), 6.77–6.78 (2H, m, H-5" and H-6"), 7.68 (1H, dd, 1.2 and 8.4 Hz, H-6), 7.92 (1H, d, J 1.2 Hz, H-4), 8.06 (1H, d, J 8.4 Hz, H-7).

N-Boc-2-[2'-(piperidin-4"-yl)ethyl]-5-(4"", 5""-tetramethyl-1""", 3""", 2""'-dioxaborolan-2""'-yl)indole, trifluoroacetate salt 48G'. In the same way, one MiniKan™ containing resin-bound enol ether 47E (93 µeq.) gave indole 48G' (36.6 mg, 73%). δH (400 MHz, CDCl$_3$): 1.37 (12H, s, CH$_3$),
1.53–1.56 (5H, m, H-pip), 1.69 (9H, s, tBu), 2.00-2.10 (2H, m, piperidine), 2.90-3.10 (4H, m, CH₂CH₂), 3.45-3.60 (2H, m, 2× CH₂N), 6.34 (1H, s, H-3), 7.68 (1H, dd, 1.2 and 8.4 Hz, H-6), 7.93 (1H, s, H-4), 8.01 (1H, d, J 8.4 Hz, H-7), 9.11 (2H, bs, NH₂).

Indoles 49Aa-Hl. Pd(PPh₃)₄ (15 mg, 4 mol%) was added to a flask containing 8 MiniKans™ each containing a different resin-bound enol ether 47A-H (93 µeq./MiniKan™), stirring with Cs₂CO₃ (1.21 g, 3.7 mmol), one of the aryl iodides a-h (3.7 mmol), and water (13.3 µL, 0.74 mmol) in degassed DMF (30 mL) under argon. The suspension was shaken at 80 °C for 6 h. The mixture was allowed to cool and the MiniKans™ were separated from the reaction mixture and washed with 9:1 DMF-H₂O (3×), alternately with MeOH and DCM (3×), and finally with MeOH and Et₂O. The MiniKans™ containing resin were then dried under vacuum. This procedure was used for each of the 12 different aryl iodides a-h and the resulting 96 MiniKans™, each containing a different resin-bound enol ether, were placed in an IRORI Clevap™ (automatic cleavage and evaporation) station, so that each MiniKan™ was treated separately with trifluoroacetic acid (1%) in DCM for 1.5 h, then with DCM-MeOH (4:1) for 0.5 h and the combined organics from each MiniKan™ were collected separately and evaporated to give indoles 49Aa-Hl in the yields and purities shown in Table 1. Analysis of the library was by reversed phase HPLC/DAD-UV/ELSD/MS using a Waters Analytical 4-way MUX QC System with an Agilent Zorbax SB C8, 21.2 x 250 mm column and eluting with 0.1% trifluoroacetic acid in MeCN:H₂O (4:1), Flow = 25 mL/min. HPLC MS data is displayed in Table 2 (library members in bold also have ¹H NMR data for the reversed phase HPLC-purified indoles as listed below).
<table>
<thead>
<tr>
<th>Table 2</th>
<th>HPLC retention times (min) for indoles 49 (detected M+H⁺ in parenthesis)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>a</td>
<td>1.73</td>
</tr>
<tr>
<td></td>
<td>(440.2)</td>
</tr>
<tr>
<td>b</td>
<td>5.30</td>
</tr>
<tr>
<td></td>
<td>(427.2)</td>
</tr>
<tr>
<td>c</td>
<td>7.22</td>
</tr>
<tr>
<td></td>
<td>(411.2)</td>
</tr>
<tr>
<td>d</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>4.90</td>
</tr>
<tr>
<td></td>
<td>(422.2)</td>
</tr>
<tr>
<td>f</td>
<td>5.64</td>
</tr>
<tr>
<td></td>
<td>(403.1)</td>
</tr>
<tr>
<td>g</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>(387.1)</td>
</tr>
<tr>
<td>h</td>
<td>4.34</td>
</tr>
<tr>
<td></td>
<td>(422.1)</td>
</tr>
<tr>
<td>i</td>
<td>3.89</td>
</tr>
<tr>
<td></td>
<td>(404.1)</td>
</tr>
<tr>
<td>j</td>
<td>8.57</td>
</tr>
<tr>
<td></td>
<td>(399.2)</td>
</tr>
<tr>
<td>k</td>
<td>1.51</td>
</tr>
<tr>
<td></td>
<td>(412.2)</td>
</tr>
<tr>
<td>l</td>
<td>5.10</td>
</tr>
<tr>
<td></td>
<td>(399.2)</td>
</tr>
</tbody>
</table>

* MW of product not detected
N-Boc-5-(4'-methoxyphenyl)-2-(2''-phenylethyl)indole 49Ab. Data as reported under indole 41 above.

N-Boc-5-(2'-methylphenyl)-2-(2''-phenylethyl)indole 49Ac. δ_H (400 MHz, CDCl$_3$): 1.70 (9H, s, 'Bu), 2.28 (3H, s, CH$_3$) 3.04 (2H, t, J 7.6 Hz, CH$_2$Ph), 3.36 (2H, t, J 7.6 Hz, CH$_2$CH$_2$Ph), 6.39 (1H, s, H-3), 7.20 (1H, dd, 2.0 and 8.8 Hz, H-6) 7.22-7.32 (9H, m, Ph, H-3' to H-6'), 7.38 (1H, d, J 2.0 Hz, H-4), 8.09 (1H, d, J 8.8 Hz, H-7).

N-Boc-5-(3'-cyanophenyl)-2-(2''-phenylethyl)indole 49Ad. δ_H (400 MHz, CDCl$_3$): 1.71 (9H, s, 'Bu), 3.05 (2H, t, J 7.8 Hz, CH$_2$Ph), 3.37 (2H, t, J 7.8 Hz, CH$_2$CH$_2$Ph), 6.41 (1H, s, H-3), 7.18-7.32 (5H, m, Ph) 7.44 (1H, dd, 2.0 and 8.8 Hz, H-6), 7.53 (1H, dt, J 0.4 and 7.6 Hz, H-5'), 7.59-7.63 (2H, m, H-4 and H-6'), 7.86 (1H, ddd, J 1.2, 2.0 and 8.0 Hz, H-4'), 7.91-7.92 (1H, m, H-2'), 8.16 (1H, d, J 8.8 Hz, H-7).

N-Boc-5-(4'-methoxyphenyl)-2-(3''-phenylpropyl)indole 49Cb. δ_H (400 MHz, CDCl$_3$): 1.68 (9H, s, 'Bu), 2.00-2.10 (2H, m, CH$_2$CH$_2$CH$_2$) 2.75 (2H, t, J 7.6 Hz, CH$_2$Ph), 3.06 (2H, t, J 7.6 Hz, CH$_2$CH$_2$CH$_2$Ph), 3.85 (3H, s, OCH$_3$), 6.39 (1H, s, H-3), 6.98 (2H, d, J 8.8 Hz, H-3' and H-5'), 7.17-7.32 (5H, m, Ph) 7.42 (1H, dd, 2.0 and 8.4 Hz, H-6), 7.56 (2H, d, J 8.8 Hz, H-2' and H-6'), 7.60 (1H, d, J 1.6 Hz, H-4), 8.11 (1H, d, J 8.4 Hz, H-7).

N-Boc-5-(4'-methoxyphenyl)-2-(3''-phenoxypropyl)indole 49Cd. δ_H (400 MHz, CDCl$_3$): 1.70 (9H, s, 'Bu), 2.21 (2H, tt, J 6.4 and 7.4 Hz, CH$_2$CH$_2$CH$_2$), 3.23 (2H, t, J 7.4 Hz, CH$_2$CH$_2$CH$_2$OPh), 3.85 (3H, s, OCH$_3$) 4.06 (2H, t, J 6.4 Hz, CH$_2$OPh), 6.42 (1H, s, H-3), 6.89-6.98 (3H, m, Ph), 7.00 (2H, d, J 2.8 Hz, H-3' and H-5') 7.26-7.30 (2H, m, Ph) 7.43 (1H, dd, 2.0 and 8.4 Hz, H-6), 7.54 (2H, d, 8.8 Hz, H-2' and H-6'), 7.60 (1H, d, J 2.0 Hz, H-4), 8.10 (1H, d, J 8.4 Hz, H-7).

N-Boc-5-(2'-methylphenyl)-2-(3''-phenoxypropyl)indole 49Ce. δ_H (400 MHz, CDCl$_3$): 1.70 (9H, s, 'Bu), 2.22 (2H, tt, 6.2 and 7.4 Hz, CH$_2$CH$_2$CH$_2$), 2.28 (3H, s, CH$_3$) 3.24 (2H, t, J 7.4 Hz, CH$_2$CH$_2$CH$_2$OPh), 4.07 (2H, t, J 6.2 Hz, CH$_2$OPh), 6.41 (1H, s, H-3), 6.90-6.96 (3H, m, Ph), 7.20 (1H, dd, 2.0 and 8.4 Hz, H-6), 7.22-7.26 (6H, m, H-3' to H-6' and Ph), 7.37 (1H, d, J 2.0 Hz, H-4), 8.10 (1H, d, J 8.4 Hz, H-7).

N-Boc-5-(3'-cyanophenyl)-2-(3''-phenoxypropyl)indole 49Ce. δ_H (400 MHz, CDCl$_3$): 1.71 (9H, s, 'Bu), 2.22 (2H, tt, J 6.2 and 7.4 Hz, CH$_2$CH$_2$CH$_2$), 3.23 (2H, t, J 7.4 Hz, CH$_2$CH$_2$CH$_2$OPh), 4.06 (2H, t, J 6.2 Hz, CH$_2$OPh), 6.44 (1H, s, H-3), 6.89-6.96 (3H, m, Ph), 7.26-7.31 (2H, m, Ph) 7.43
(1H, dd, J 2.0 and 8.8 Hz, H-6) 7.53 (1H, t, 7.6 Hz, H-5'), 7.59-7.63 (2H, m, H-4 and H-6'), 7.86 (1H, td, J 1.4 and 7.6 Hz, H-4'), 7.91 (1H, t, 1.6 Hz, H-2'), 8.17 (1H, d, J 8.8 Hz, H-7).

N-Boc-5-(2'-cyanophenyl)-2-(3''-phenoxypropyl)indole 49Eh. δH (400 MHz, CDCl3): 1.70 (9H, s, 'Bu), 2.22 (2H, tt, J 6.2 and 7.4 Hz, CH2CH2CH2), 3.24 (2H, t, J 7.4 Hz, CH2CH2CH2), 4.06 (2H, t, J 6.2 Hz, CH2CH2OPh), 6.45 (1H, s, H-3), 6.88-6.96 (3H, m, Ph), 7.26-7.31 (2H, m, Ph), 7.40-7.44 (2H, m, H-4' and H-6'), 7.55 (1H, dd, 0.8 and 7.6 Hz, H-6'), 7.61-7.66 (2H, m, H-4 and H-5'), 7.77 (1H, dd, J 2.0 and 8.0 Hz, H-3'), 8.18 (1H, d, J 8.8 Hz, H-7).

N-Boc-2-(3'-phenoxypropyl)-5-(pyrazin-2''-yl)indole 49Ei. δH (400 MHz, CDCl3): 1.71 (9H, s, 'Bu), 2.22 (2H, tt, J 6.2 and 7.4 Hz, CH2CH2CH2), 3.24 (2H, t, J 7.4 Hz, CH2CH2CH2), 4.07 (2H, t, J 6.2 Hz, CH2CH2OPh), 6.48 (1H, s, H-3), 6.89-6.97 (3H, m, Ph), 7.26-7.30 (2H, m, Ph) 7.90 (1H, dd, 1.6 Hz and 8.8 Hz, H-6), 8.12 (1H, d, 1.6 Hz, H-4), 8.21 (1H, d, J 8.8 Hz, H-7), 8.47 (1H, d, J 2.4 Hz, H-6'), 8.62 (1H, dd, J 1.6 and 2.4 Hz, H-5'), 9.08 (1H, d, J 1.6 Hz, H-3').

N-Boc-2-[2'-(3'',4''-dimethoxyphenyl)ethyl]-5-(4''-methoxyphenyl)indole 49Fb. δH (400 MHz, CDCl3): 1.70 (9H, s, 'Bu), 2.97 (2H, t, J 7.8 Hz, CH2Ph), 3.33 (2H, t, J 7.8 Hz, CH2CH2Ph), 3.82 (3H, s, OCH3), 3.85 (3H, s, OCH3), 3.86 (3H, s, OCH3), 6.37 (1H, s, H-3), 6.73 (1H, d, J 1.6 Hz, H-2''), 6.77-6.80 (2H, m, H-5'' and H-6''), 6.98 (2H, d, J 8.8 Hz, H-3'' and H-5''), 7.44 (1H, dd, 2.0 and 8.8 Hz, H-6), 7.55-7.60 (3H, m, H-4, H-2'' and H-6''), 8.10 (1H, d, J 8.8 Hz, H-7).

N-Boc-2-[2'-(3'',4''-dimethoxyphenyl)ethyl]-5-(2''-methylphenyl)indole 49Fc. δH (400 MHz, CDCl3): 1.70 (9H, s, 'Bu), 2.29 (3H, s, ArCH3), 2.98 (2H, t, J 7.8 Hz, H-2'), 3.33 (2H, t, J 7.8 Hz, H-1''), 3.82 (3H, s, OCH3), 3.87 (3H, s, OCH3), 6.37 (1H, s, H-3), 6.73 (1H, s, H-2''), 6.81 (2H, s, H-5'' and H-6'', coincident), 7.20 (1H, dd, 2.0 and 8.8 Hz, H-6), 7.23-7.28 (4H, m, H-3'' to H-6''), 7.37 (1H, d, J 2.0 Hz, H-4), 8.09 (1H, d, J 8.8 Hz, H-7).

N-Boc-5-(3'-cyanophenyl)-2-[2''-(3'',4''-dimethoxyphenyl)ethyl]indole 49Fe. δH (400 MHz, CDCl3): 1.71 (9H, s, 'Bu), 2.98 (2H, t, J 7.6 Hz, H-2''), 3.34 (2H, t, J 7.6 Hz, H-1''), 3.82 (3H, s, OCH3), 3.86 (3H, s, OCH3), 6.33 (1H, s, H-3), 6.73 (1H, d, J 1.6 Hz, H-2''), 6.74-6.82 (2H, m, H-5'' and H-6''), 7.45 (1H, dd, 2.0 and 8.4 Hz, H-6), 7.52 (1H, dt, J 0.4 and 7.8 Hz, H-5'), 7.59-7.63 (2H, m, H-4 and H-6'), 7.86 (1H, td, J 1.6 and 8.0 Hz, H-4'), 7.91 (t, J 1.4 Hz, H-2'), 8.17 (1H, d, J 8.8 Hz, H-7).
N-Boc-5-(2'-cyanophenyl)-2-[2"-(3",4"'-dimethoxyphenyl)ethyl]indole 49Fh. \(\delta_H \) (400 MHz, CDCl\(_3\)): 1.71 (9H, s, 'Bu), 2.98 (2H, t, \(J \) 7.8 Hz, H-2"), 3.34 (2H, t, \(J \) 7.8 Hz, H-1"), 3.83 (3H, s, OCH\(_3\)), 3.86 (3H, s, OCH\(_3\)), 6.42 (1H, s, H-3), 6.72-6.82 (3H, m, H-2'', H-5'' and H-6''), 7.40-7.45 (2H, m, H-4' and H-6), 7.55 (1H, dd, 0.8 and 7.6 Hz, H-6'), 7.62-7.66 (2H, m, H-4 and H-5'), 7.77 (1H, dd, \(J \) 0.8 and 7.6 Hz, H-3'), 8.18 (1H, d, \(J \) 8.4 Hz, H-7).

N-Boc-2-[2"-(N-Boc-piperidin-4"-yl)ethyl]-5-(4"'-methoxyphenyl)indole 49Gb. \(\delta_H \) (400 MHz, CDCl\(_3\)): 1.06-1.25 (2H, m, piperidine), 1.46 (9H, s, 'Bu), 1.49-1.78 (5H, m, piperidine), 1.70 (9H, s, 'Bu), 2.60-2.70 (2H, m, \(CH_2CH_2CH_2 \)), 3.05 (2H, t, \(J \) 7.6 Hz, H-1'), 3.86 (3H, s, OCH\(_3\)), 4.05-4.20 (2H, m, 2\(\times CH^4H^1N\)), 6.37 (1H, s, H-3), 6.99 (2H, d \(J \) 8.8 Hz, H-3'' and H-5'') 7.43 (1H, dd, 2.0 and 8.8 Hz, H-6), 7.55 (2H, d, \(J \) 8.8 Hz, H-2'' and H-6''), 7.58 (1H, d, \(J \) 2.0 Hz, H-4), 8.08 (1H, d, \(J \) 8.8 Hz, H-7).

Acknowledgements

GSK and University of Glasgow for funding. Thanks to Ian Davidson for HPLC-UV/MS.

References

Miyaura coupling is reported to be effective for aldehyde 16: DiMauro, E. F.; Vitullo, J. R. J. Org. Chem. 2006, 71, 3959-3962.

3726-3730. (c) Farnsworth, D. W.; Wink, D. A.; Roscher, N. M.; Michejda, C. J.; Smith, R. H., Jr.

