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WEYL GROUPS AND ELLIPTIC SOLUTIONS OF THE WDVV

EQUATIONS

IAN A. B. STRACHAN

Abstract. A functional ansatz is developed which gives certain elliptic solu-
tions of the Witten-Dijkgraaf-Verlinde-Verlinde (or WDVV) equation. This is
based on the elliptic trilogarithm function introduced by Beilinson and Levin.
For this to be a solution results in a number of purely algebraic conditions on
the set of vectors that appear in the ansatz, this providing an elliptic version
of the idea, introduced by Veselov, of a ∨-system.

Rational and trigonometric limits are studied together with examples of
elliptic ∨-systems based on various Weyl groups. Jacobi group orbit spaces are
studied: these carry the structure of a Frobenius manifold. The corresponding
‘almost dual’ structure is shown, in the AN and BN and conjecturally for an
arbitrary Weyl group, to correspond to the elliptic solutions of the WDVV
equations.

Transformation properties, under the Jacobi group, of the elliptic triloga-
rithm are derived together with various functional identities which generalize
the classical Frobenius-Stickelburger relations.
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1. Introduction

One recurrent theme in the theory of integrable systems is the tower of general-
izations

rational −→ trigonometric −→ elliptic ,

the paradigm being provided by the Calogero-Moser system, where the original
rational interaction term may be generalized

1

z2
−→

1

sin2 z
−→ ℘(z)

whilst retaining integrability. A second recurrent theme is the appearance of root
systems, the paradigm being again provided by the Calogero-Moser system where
the interaction term ∑

i6=j

1

(zi − zj)2

can, on fixing the centre of mass, be written as
∑

α∈RAN

1

(α, z)2
,

where the sum is taken over the roots RAN
of the AN Coxeter group [24]. The

integrability of the system is preserved if other root systems are used.
These two themes occur in many other integrable structures; R matrices, quan-

tum groups, Dunkl operators, KZ-equations all admit (to a greater or lesser extent)
rational, trigonometric and elliptic versions and generalizations to arbitrary root
systems (see for example [8] and the references therein). In this paper elliptic
solutions of the Witten-Dijkgraaf-Verlinde-Verlinde (or WDVV) equations will be
studied for arbitrary Weyl groups, these sitting at the right of the following tower
of generalizations:

CN/W −→ CN+1/W̃ −→ Ω/J(g) .

{
Coxeter group

orbit space

}
−→

{
Extended affine Weyl

orbit space

}
−→

{
Jacobi group
orbit space

}

We begin by defining a Frobenius manifold.

1.1. Frobenius Manifolds and almost-duality.

Definition 1. An algebra (A, ◦, η, e) over C is a Frobenius algebra if:

• the algebra {A, ◦} is commutative, associative with unity e ;
• the multiplication is compatible with a C-valued bilinear, symmetric, non-

degenerate inner product

η : A×A → C
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in the sense that
η(a ◦ b, c) = η(a, b ◦ c)

for all a, b, c ∈ A .

With this structure one may define a Frobenius manifold [9]:

Definition 2. (M, ◦, e, η, E) is a Frobenius manifold if each tangent space TpM is
a Frobenius algebra varying smoothly over M with the additional properties:

• the inner product is a flat metric on M (the term ‘metric’ will denote a
complex-valued quadratic form on M).

• ∇e = 0, where ∇ is the Levi-Civita connection of the metric;
• the tensor (∇W ◦)(X, Y, Z) is totally symmetric for all vectors W, X, Y, Z ∈

TM ;
• the vector field E (the Euler vector field) has the properties

∇(∇E) = 0

and the corresponding one-parameter group of diffeomorphisms acts by con-
formal transformations of the metric and by rescalings on the Frobenius
algebras TpM .

Since the metric η is flat there exists a distinguished coordinate system (defined
up to linear transformations) of so-called flat coordinates1 {tα , α = 0 , . . . , N + 1}
in which the components of the metric are constant. From the various symmetry
properties of tensors ◦ and ∇◦ it then follows that there exists a function F , the
prepotential, such that in the flat coordinate system,

cαβγ = η

(
∂

∂tα
◦

∂

∂tβ
,

∂

∂tγ

)
,

=
∂3F

∂tα∂tβ∂tγ
,

and the associativity condition then implies that the pair (F, η) satisfy the WDVV-
equations

∂3F

∂tα∂tβ∂tλ
ηλµ ∂3F

∂tµ∂tγ∂tδ
−

∂3F

∂tδ∂tβ∂tλ
ηλµ ∂3F

∂tµ∂tγ∂tα
= 0 ,

where α , β , γ , δ = 0 . . . , N + 1 .
Consider the vector field E−1 defined by the condition

E−1 ◦ E = e .

This is defined on M⋆ = M\Σ , where Σ is the discriminant submanifold on which
E−1 is undefined. With this field one may define a new ‘dual’ multiplication ⋆ :
TM⋆ × TM⋆ → TM⋆ by

X ⋆ Y = E−1 ◦ X ◦ Y , ∀X , Y ∈ TM⋆ .

This new multiplication is clearly commutative and associative, with the Euler
vector field being the unity field for the new multiplication.

Furthermore, this new multiplication is compatible with the intersection form g
on the Frobenius manifold, i.e.

g(X ⋆ Y, Z) = g(X, Y ⋆ Z) , ∀X , Y , Z ∈ TM⋆ .

1This labeling is for future notational convenience.
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Here g is defined by the equation

g(X, Y ) = η(X ◦ Y, E−1) , ∀X , Y ∈ TM⋆

(and hence is well-defined on M⋆ ). Alternatively one may use the metric η to
extend the original multiplication to the cotangent bundle and define

g−1(x, y) = ιE(x ◦ y) , ∀x , y ∈ T ⋆M⋆ .

The intersection form has the important property that it is flat, and hence there
exists a distinguished coordinate system {p} in which the components of the in-
tersection form are constant. It turns out that there exists a dual prepotential
F ⋆ such that its third derivatives give the structure functions c⋆

ijk for the dual

multiplication. More precisely [10]:

Theorem 3. Given a Frobenius manifold M , there exists a function F ⋆ defined on
M⋆ such that:

c⋆
ijk = g

(
∂

∂pi
⋆

∂

∂pj
,

∂

∂pk

)
,

=
∂3F ⋆

∂pi∂pj∂pk
.

Moreover, the pair (F ⋆, g) satisfy the WDVV-equations in the flat coordinates {p}
of the metric g .

Thus given a specific Frobenius manifold one may construct a ‘dual’ solution to
the WDVV-equations by constructing the flat-coordinates of the intersection form
and using the above result to find the tensor c⋆

ijk from which the dual prepotential
may be constructed.

1.2. Examples. The simplest class of Frobenius manifolds is given by the so-called
Saito construction on the space of orbits of a Coxeter group. Let W be an irreducible
Coxeter group acting on a real vector space V of dimension N . The action extends
to the complexified space V ⊗ C . The orbit space

V ⊗ C/W ∼= C
N/W

has a particularly nice structure, this following from Chevalley’s theorem on the
ring of W -invariant polynomials:

Theorem 4. There exists a set of W -invariant polynomial si(z) , i = 1 , . . . , N
such that

C[z1 , . . . , zN ]W ∼= C[s1 , . . . , sN ] .

On this orbit space one may define a metric (a complex-valued quadratic form)
by taking the Lie-derivative of the W -invariant Euclidean metric g on V ⊗ C

η−1 = Leg
−1

where e is a vector field constructed from the highest degree invariant polynomial.
It was proved by K. Saito that this metric is non-degenerate and flat [28]. One
therefore obtains a flat pencil of metrics from which one may construct a polyno-
mial solution - polynomial in the flat coordinates of the metric η - to the WDVV
equations.
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The dual prepotential for this class of Frobenius manifolds is particularly simple:

(1) F =
1

4

∑

α∈RW

(α, z)2 log(α, z)2

where the sum is taken over the roots of the Coxeter group W [20, 21, 22]. However,
the space of solutions of the same functional form is far larger. Veselov [32] derived
the algebraic conditions, known as ∨-conditions, on the set of vectors U that are
required for the prepotential

F =
1

4

∑

α∈U

(α, z)2 log(α, z)2

to satisfy the WDVV equations (we assume throughout this paper that if α ∈ U

then −α ∈ U automatically). What is required here is a refinement of this idea,
namely that of a complex Euclidean ∨-system [15]

Definition 5. Let h be a complex vector space with non-degenerate bilinear form
( , ) and let U be a collection of vectors in h . A complex Euclidean ∨-system U

satisfies the following conditions:

• U is well distributed, i.e.
∑

α∈U
hα(α,u)(α,v) = 2h∨

U
(u,v) for some λ ;

• on any 2-dimensional plane Π the set Π ∩ U is either well distributed or
reducible (i.e. the union of two non-empty orthogonal subsystems).

Note the following:

• the constants hα could be absorbed into the α . In applications these con-
stants will be both positive and negative. Hence the requirement of a
complex vector space.

• the constant h∨
U

can be zero in certain spaces.

One further comment has to be made in the case when h∨
U

= 0 . We require here
that the inverse metric used in the WDVV equations is the non-degenerate bilinear
form ( , ) on h rather than one - possibly degenerate - constructed from the sum of
derivatives of F as used in [14] .

Trigonometric solutions were studied in [11], corresponding to extended affine
Weyl groups. As in the Coxeter case one has a Chevalley-type theorem and a well
defined orbit space on which one may define, following the Saito-construction, a flat
metric and hence a solution to the WDVV equations. It is to be expected, though
a full proof for arbitrary Weyl groups is currently lacking, that the corresponding
dual solutions will take the following functional form

(2) F = cubic terms +
∑

α∈RW

hαLi3

(
ei(α,x)

)

where Li3(x) is the trilogarithm and hα are Weyl-invariant sets of constants. Solu-
tions of the WDVV equations of this type have been studied by a number of authors
[21, 23] but are only known to be almost dual solutions to the extended affine Weyl

Frobenius manifolds in certain special cases (e.g. W = A
(k)
N ) [26]. Trigonometric

∨-conditions, conditions on the vectors α that ensure that the prepotential

F = cubic terms +
∑

α∈U

hαLi3

(
ei(α,x)

)
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satisfies the WDVV equations, have also been studied recently [13].
Elliptic solutions were studied in [2], being defined on the Jacobi group orbit

space Ω/J(g). Further details and definitions will be given in Section 8, following
[2],[12] and [33]. The Jacobi group J(g) (where g is a complex finite dimensional
simple Lie algebra of rank N with Weyl group W ) acts on the space

Ω = C ⊕ h ⊕ H

where h is the complex Cartan subalgebra of g and H is the upper-half-plane, and
this leads to the study of invariant functions - the Jacobi forms. Analogous to the
Coxeter case, the orbit space

Ω/J(g)

is a manifold and carries the structure of a Frobenius manifold. In [27] , using the
Hurwitz space description (see Section 8.2)

Ω/J(AN ) ∼= H1,N+1(N + 1) ,

the dual prepotential was constructed.

Theorem 6. [27] The intersection form on the space Ω/J(AN ) is given by the
formula

g = 2du dτ −
N∑

i=0

(dzi)2

∣∣∣∣∣
P

N
j=0 zj=0

(where u ∈ C , z ∈ h and τ ∈ H ). The dual prepotential is given by the formula2

F ⋆(u , z , τ) =
1

2
τu2 −

1

2
u

N∑

i=0

(zi)2

+
1

2

∑

i6=j

′ 1

(2πi)3

{
Li3(e

2i(zi−zj), e2πiτ ) − Li3(1, e2πiτ )
}

−(N + 1)
∑

j

′ 1

(2πi)3

{
Li3(e

2izj

, e2πiτ ) − Li3(1, e2πiτ )
}

.

where this function is evaluated on the plane
∑N

j=0 zj = 0 .

The precise definitions of the various terms in these formulae will be given below,
but for now we note that this dual prepotential is given in terms of the elliptic
trilogarithm Li3(z, q) introduced by Beilinson and Levin [1, 19]. This function has
appeared already in the theory of Frobenius manifolds in the enumeration of curves
[18].

This result is curious - as well as the AN root vectors appearing in the solution
certain extra vectors (in fact weight vectors) appear: these do not appear in the
corresponding rational and trigonometric solutions. This work raised a number of
questions:

• Is there a direct verification that the function that appears in Theorem
6 satisfies the WDVV equations? Recall that its construction was via a
Hurwitz space construction in terms of certain holomorphic maps between
the complex torus and the Riemann sphere.

• What is the origin of the ‘extra’ vectors in the solution?

2Note,
P

j

′

includes the term j = 0 .



WEYL GROUPS AND ELLIPTIC SOLUTIONS OF THE WDVV EQUATIONS 7

• Can one construct solutions for other Weyl groups?

The purpose of this paper is to study solutions of the WDVV equations which take
the functional form

F (u, z, τ) =
1

2
u2τ −

1

2
u(z, z) +

∑

α∈U

hαf ( zα, τ) ,

where

f(z, τ) =
1

(2πi)3
{
Li3(e

2πiz, e2πiτ ) − Li3(1, e2πiτ )
}

,

deriving a set of elliptic ∨-conditions on the ‘roots’ contained in the set U . Thus
the above questions can all be answered affirmatively. This leaves the following
question:

• For which elliptic ∨-systems is the solution the almost-dual solution to the
Jacobi group orbit space Ω/J(g) ?

This question has been answered already in the AN case [27] and in this paper
we extend the results to the BN case. For other Weyl groups it remains an open
problem.

2. The Elliptic Polylogarithm and its Properties

The functional form of the above prepotential uses the elliptic polylogarithm.
In this section this is defined and its transformation properties under shifts and
modular transformations are studied. Before this we define various special functions
and the notation that will be used throughout the rest of this paper.

2.1. Notation. There are, unfortunately, many different definitions and normal-
izations for elliptic, number-theoretic and other special functions. Here we list the
definitions used in this paper. Let q = e2πiτ , where τ ∈ H .

• ϑ1-function:

ϑ1(z|τ) = −i
(
eπiz − e−πiz

)
q

1
8

∞∏

n=1

(1 − qn)
(
1 − qne2πiz

) (
1 − qne−2πiz

)
.

The fundamental lattice is generated by z 7→ z + 1 , z 7→ z + τ , and the
function itself satisfies the complex heat equation

∂2ϑ1

∂z2
= 4πi

∂ϑ1

∂τ
.

• Bernoulli numbers and Bernoulli polynomials:

x

ex − 1
=

∞∑

n=0

Bn
xn

n!
, Bn(z) =

n∑

k=0

(
n
k

)
Bkzn−k .

• Eisenstein series:

Ek(τ) = 1 −
2k

Bk

∞∑

n=1

σk−1(n) qn , k ∈ 2N

where σk(n) =
∑

d|n dk .
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• Dedekind η-function:

η(τ) = q
1
24

∞∏

n=1

(1 − qn) .

• Polylogarithm function:

LiN(z) =

∞∑

n=1

zn

nN
, |z| < 1 .

Note that ϑ1 , E2 and η are related:

η′(τ)

η(τ)
=

2πi

24
E2(τ) =

1

12πi

ϑ′′′
1 (0, τ)

ϑ′
1(0, τ)

.

These have the following properties under inversion of the independent variable:

τ−nEn

(
−

1

τ

)
= En(τ) , n ≥ 4 ;

τ−2E2

(
−

1

τ

)
= E2(τ) +

12

2πiτ
;

η

(
−

1

τ

)
=

√
τ

i
η(τ)

where in the last formula the square-root is taken to have non-negative real part.
The polylogarithm has the inversion property (for n ∈ N - other more complicated
versions hold for other values):

(3) Lin
(
e2πiz

)
+ (−1)nLin

(
e−2πiz

)
= −

(2πi)n

n!
Bn(z) .

This inversion formula holds: if ℑ(z) ≥ 0 for 0 ≤ ℜ(z) < 1 , and if ℑ(z) < 0
for 0 < ℜ(z) ≤ 1 . This, and other similar formulae, may be used to analytically
continue the function outside the unit disc to a multi-valued holomorphic function
on C\{0, 1} . For a discussion of the monodromy of the polylogarithm function see
[25]. This multivaluedness will also occur in the solution of the WDVV equations.
However this multivaluedness occurs in the quadratic terms only and hence any
physical quantities are single-valued.

2.2. The elliptic polylogarithm. An ‘obvious’ elliptic generalization of the poly-
logarithm function is

Lir(ζ, q) =

∞∑

n=−∞

Lir(q
nζ) .

However this series diverges, but by using the inversion formula (3) and ζ-function
regularization one can arrive at the following definition of the elliptic polylogarithm
function [1, 19]:

Lir(ζ, q) =

∞∑

n=0

Lir(q
nζ) +

∞∑

n=1

Lir(q
nζ−1) − χr(ζ, q) , r odd ,



WEYL GROUPS AND ELLIPTIC SOLUTIONS OF THE WDVV EQUATIONS 9

where

χr(ζ, q) =

r∑

j=0

Bj+1

(r − j)!(j + 1)!
(log ζ)(r−j)(log q)j .

A real-valued version of this function had previously been studied by Zagier [35].
With this the function f may be defined.

Definition 7. The function f(z, τ) , where z ∈ C , τ ∈ H , is defined to be:

f(z, τ) =
1

(2πi)3
{
Li3(e

2πiz , q) − Li3(1, q)
}

.

It follows from the definitions that

(4)

(
d

dτ

)3
1

(2πi)3
Li3(1, q) =

1

120
E4(τ)

and

(5)

(
∂

∂z

)2

f(z, τ) = −
1

2πi
log

{
ϑ1(z, τ)

η(τ)

}
.

Thus the elliptic-trilogarithm may be thought of as a classical function (or, at least,
a neoclassical function) as it may be obtained from classical functions via nested
integration and other standard procedures. It does, however, provide a systematic
way to deal with the arbitrary functions that would appear this way. The notation
F ≃ G will be used if the functions F and G differ by a quadratic function in the
variables {u, z, τ} (recall that any prepotential satisfying the WDVV equations is
only defined up to quadratic terms in the flat-coordintes).

Proposition 8. The function f has the following transformation properties:

f(z + 1, τ) ≃ f(z, τ) ;

f(z, τ + 1) ≃ f(z, τ) ;

f(z + τ, τ) ≃ f(z, τ) +

{
1

6
z3 +

1

4
z2τ +

1

6
zτ2 +

1

24
τ3

}
;

f(−z, τ) ≃ f(z, τ) .

The function also has the alternative expansions:

(6)

f(z, τ) ≃ −
1

(2πi)

{
1

2
z2 log z + z2 log η(τ)

}

+
1

(2πi)3

∞∑

n=1

(−1)nE2n(τ)B2n

(2n + 2)!(2n)
(2πz)2n+2

and

(7)

f(z, τ) ≃
1

(2πi)3
Li3

(
e2πiz

)
+

1

12
z3 −

1

24
z2τ

−
4

(2πi)3

∞∑

r=1

{
qr

(1 − qr)

}
sin2(πrz)

r3

Furthermore,

f

(
z

τ
,−

1

τ

)
≃

1

τ2
f(z, τ) −

1

τ3

z4

4!
.
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Proof The first two relations follow from the definition. The third and fourth
use the inversion formula for polylogarithms (3).

The proof of (6) and (7) just involves some careful resumming. Consider the
first two terms in the definition of f :
∞∑

n=0

Li3(q
ne2πiz) +

∞∑

n=1

Li3(q
ne−2πiz) = Li3(e

2πiz) +

2

∞∑

s=0

(−1)s

(2s)!

{
∞∑

n,r=1

qnrr2s−3

}
(2πz)2s .

From this series (7) follows immediately. To obtain (6) one rearranges the terms.
The s = 0 term cancels in the final expression and the remaining terms may be
re-expressed in terms of Eisenstein series (for s > 1) or the Dedekind function (for
s = 1). Finally, using the result

1

(2πi)3
d3

dz3
Li3

(
e2πiz

)
= −

1

2
[1 + coth(πiz)] ,

= −

[
1

2
+

1

(2πz)
+

∞∑

n=1

B2n

(2n)!
(2πiz)2n−1

]

one may obtain a series for Li3
(
e2πiz

)
. Putting all these parts together gives the

series (6). �

Theorem 9. The function

h(z, τ) = f(2z, τ) − 4f(z, τ)

satisfies the partial differential equation

h(3,0)(z, τ)h(1,2)(z, τ) −
[
h(2,1)(z, τ)

]2
+ 4h(0,3)(z, τ) = 0

where

h(m,n)(z, τ) =
∂n+mh

∂zm∂τn
.

Proof Let

∆(z, τ) = h(3,0)(z, τ)h(1,2)(z, τ) −
[
h(2,1)(z, τ)

]2
+ 4h(0,3)(z, τ) .

Using the transformation properties in Proposition 8 one may derive the transfor-
mation properties of the derivatives and hence for the combination ∆ . While the
individual terms have quite complicated transformation properties, those for ∆ are
very simple:

∆(z + 1, τ) = ∆(z, τ) ,

∆(z + τ, τ) = ∆(z, τ) ,

∆

(
z

τ
,−

1

τ

)
= τ4∆(z, τ) .

The first two of these equations imply that the function ∆ is doubly periodic. From
the series expansion in Proposition 8 it follows that ∆ has no poles: the only term
which has a pole is f (3,0) and this cancels with the zero in f (1,2) . Thus ∆ is doubly
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periodic with no poles and hence must be a function of τ -alone (i.e. a theta-
constant). The remaining transformation property implies that ∆ is a modular
function of degree 4. The q-series representation of the function f in Proposition 8
implies that ∆ is actually a cusp-form. But the space of cusp-forms of degree 4 is
empty and hence ∆ = 0 . �

Corollary 10. The pair

F (u, z, τ) =
1

2
u2τ − uz2 + h(z, τ) ,

=
1

2
u2τ − uz2 + f(2z, τ) − 4f(z, τ)

and
g = 2du dτ − 2dz2

satisfy the WDVV equations.

Proof The WDVV equations for the above prepotential reduce to the single
equation ∆ = 0 so the result follows immediately from the above Theorem. �

Using the same methods it is straightforward to show that the function

(8) h̃(z, τ) =
3

4(2πi)3

[
Li3(e

2πiz, q) +
3

2
Li3(1, q)

]

also satisfies the equation ∆ = 0 . It is, however, the function h which defines the
dual prepotential to the A1-Jacobi group orbit space - see Theorem 6.

3. Transformation properties of the WDVV equations

Recall that we seek a solution of the WDVV of the form

(9) F (u, z, τ) =
1

2
u2τ −

1

2
u(z, z) +

∑

α∈U

hαf ( zα, τ)

with f(z, τ) being given by Definition 7. Sometimes the notation zα will be used to
denote (z, α) , especially for terms involving the function f . Thus f((z, α), τ) will
be written f(zα, τ) or even f(zα) . The coordinates {tα , α = 0 , 1 , . . .N , N +1} are
defined to be

t0 = u ,

ti = zi , i = 1 , . . .N ,

tN+1 = τ .

Latin indices will range from 1 to N and Greek from 0 to N + 1 so the dimension
of the manifold is N + 2 , with N ≥ 1 . In addition u ∈ C , z ∈ h ∼= CN , τ ∈ H ,
so (u, z, τ) ∈ Ω . Later, h will be the complex Cartan subalgebra of a simple Lie
algebra g of rank N with Weyl group W , but for now it may be thought of a just
CN . Also, ( , ) denotes the standard Euclidean inner product on h . It follows from
the functional dependence on t0 = u that ∂u is the unity vector field and hence the
metric on Ω is

g = dτ du + du dτ − (dz, dz) .

One of the main ideas of this paper is to extend Theorem 9 to higher dimension,
using doubly-periodicity and modular arguments to prove that the WDVV equa-
tions are satisfied. To begin we require a detailed analysis of the WDVV equations
themselves.
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3.1. Analysis of the WDVV equations. The WDVV equations are the condi-
tions for a commutative algebra to be associative. Thus they may be written in
terms of the vanishing of the associator

∆[X, Y, Z] = (X ◦ Y ) ◦ Z − X ◦ (Y ◦ Z) .

Since in the case being considered we have a unity element these simplify further:
if any of the vector field is equal to the unity field then ∆ vanishes identically.
Since the vector field ∂τ ∈ TH is special (for example, it behaves differently to the
other variables under modularity transformation), we decompose these equation
further, taking the inner product with arbitrary vector fields to obtain scalar-valued
equations.

Proposition 11. The WDVV equations for a multiplication with unity field are
equivalent to the vanishing of the following functions:

∆(1)(u,v) = g(∂τ ◦ ∂τ ,u ◦ v) − g(∂τ ◦ u, ∂τ ◦ v) ,

∆(2)(u,v,w) = g(∂τ ◦ u,v ◦ w) − g(∂τ ◦ w,u ◦ v) ,

∆(3)(u,v,w,x) = g(u ◦ v,w ◦ x) − g(u ◦ x,v ◦ w)

for all u ,v ,w ,x ∈ Th .

In terms of coordinate vector fields these conditions are:

∆
(1)
ij = gij cτττ + gpq {cττp cijq − cτip cτjq} ,

∆
(2)
ijk = {gjk cττi − gij cττk} + gpq {cτip cjkq − cτkp cijq} ,

∆
(3)
ijrs = {gij cτrs + grs cτij − gis cτrj − grj cτis} + gpq {cijp crsq − cisp crjq}

where gij = −(∂i, ∂j) . The function ∆ in theorem (9) is, since dimCh = 1, propor-

tional to ∆(1)(x,x) .

3.2. Modular transformations of the structure functions.

Lemma 12. Let

(10)

û = u −
(z, z)

2τ
,

ẑ =
z

τ
,

τ̂ = −
1

τ
.

Then

F (û, ẑ, τ̂ ) =
1

τ2

{
F (u, z, τ) −

1

2
u (2uτ − (z, z))

}

if and only if

(11)
∑

α∈U

hα(α, z)4 = 3(z, z)2 .

Proof This follows immediately from Proposition 8. �
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The origin of the transformation (10) comes from the study of symmetries of the
WDVV equations (see [9] Appendix B). A symmetry is a transformation

tα 7→ t̂α ,

gαβ 7→ ĝαβ ,

F 7→ F̂

that acts on the solution space of the WDVV equations. In particular, (10) is just
the transformation, denoted I in [9],

t̂0 =
1

2

tσtσ

tN+1
,

t̂i =
ti

tN+1
, i = 1 , . . . , N ,

t̂N+1 = −
1

tN+1
,

ĝαβ = gαβ ,

F̂ (t̂) =
(
tN+1

)−2
[
F (t) −

1

2
t0(tσtσ)

]

which induces a symmetry of the WDVV equations. Up to a simple equivalence,
I2 = I . It follows from this and Lemma 12 that we are at the fixed point of this
involution and that, rather than telling one how to construct a new solution from
a seed solution, it gives the transformation property of the various functions under
the modular transformations. A simple modification of Lemma B.1 [9] immediately
gives:

Proposition 13. Suppose F is given by equation (9) where condition (11) is as-
sumed to hold. Let cαβγ = ∂α∂β∂γF (t) . Then

cαβγ(z, τ + 1) = cαβγ(z, τ)

and

cijk

(
z

τ
,−

1

τ

)
= τ cijk(z, τ) − gij zk − gjk zi − gki zj ,

cτij

(
z

τ
,−

1

τ

)
= τ cijα(z, τ) tα −

1

2
gij (tσtσ) − zizj ,

cττi

(
z

τ
,−

1

τ

)
= τ ciαβ(z, τ)tαtβ − zi (tσtσ) ,

cτττ

(
z

τ
,−

1

τ

)
= τ cαβγ(z, τ)tαtβtγ −

3

4
(tσtσ)2 .

With these, the transformation properties of the functions ∆(i) are

∆(i)(z, τ + 1) = ∆(i)(z, τ) , i = 1 , 2 , 3
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and

∆
(3)
ijrs

(
z

τ
,−

1

τ

)
= τ2 ∆

(3)
ijrs(z, τ) ,

∆
(2)
ijk

(
z

τ
,−

1

τ

)
= τ3 ∆

(2)
ijk(z, τ) + τ2zr∆

(3)
irkj(z, τ) ,

∆
(1)
ij

(
z

τ
,−

1

τ

)
= τ4 ∆

(1)
ij (z, τ) − τ3 zr

{
∆

(2)
ijr(z, τ) + ∆

(2)
jir(z, τ)

}

+τ2 zazb∆
(3)
abij(z, τ) .

Proof The proof is straightforward and uses the transformation properties of f
derived in Proposition 8. �

It is important to note that these ∆(i) are powers series, not Laurent series, in the
q-variable. Again, this follows from the q-expansion of f given in proposition 8.

3.3. Periodicity properties of the structure functions. We assume that there
exists a vector p ∈ h such that (α,p) ∈ Z for all α ∈ U . Later we will require
the existence of a full N -dimensional lattice (the ‘weight lattice’ associated to the
‘roots’ in U), but for now we just require a single such vector. From Proposition 8
it follows that

f ((α, z + p), τ) ≃ f ((α, z), τ)

and hence F (u, z + p, τ) ≃ F (u, z, τ) . Thus

∆(i)(z + p, τ) = ∆(i)(z, τ) , i = 1 , 2 , 3 .

The calculation of the transformations under shifts z 7→ z+ pτ requires more care.

Proposition 14. Assume that the following conditions hold:
∑

α∈U

hα(α, z)4 = 3(z, z)2 ,

and (α,p) ∈ Z for all α ∈ U . Then

h(z + pτ, τ) ≃ h(z, τ) +

1

8





4(p, z)(z, z) + τ
[
4(p, z)2 + 2(p,p)(z, z)

]

+4τ2(p, z)(p,p) + τ3(p,p)2





where

h(z, τ) =
∑

α∈U

hαf(zα, τ) .

Proof From Proposition 8 it follows by induction, for n ∈ Z , that

f(z + nτ, τ) ≃ f(z, τ) +
1

24

(
4nz3 + 6n2τz2 + 4n3τ2z + n4τ3

)

and since, by assumption, (α,p) ∈ Z , it follows immediately that

f ((α, z) + (α,p)τ, τ) ≃ f ((α, z), τ) +

1

24





4(α,p)(α, z)3 + 6τ(α,p)2(α, z)2+

4τ2(α,p)3(α, z) + τ3(α,p)4



 .
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Hence, on summing over α ,

h(z + pτ, τ) ≃ h (z, τ) +

1

24





4
∑

α hα(α,p)(α, z)3 + 6τ
∑

α hα(α,p)2(α, z)2+

4τ2
∑

α hα(α,p)3(α, z) + τ3
∑

α hα(α,p)4



 .

Hence, using the first condition (and its polarized version), the result follows. �

With this the following Proposition may be proved: the first part is immediate
and the second part follows from routine but tedious calculations.

Proposition 15. Under the conditions of the above proposition, the structure func-
tions have the following transformation properties:

cijk(z + pτ, τ) = cijk(z, τ) + pi gjk + pj gki + pk gij ,

cτij(z + pτ, τ) = cτij(z, τ) − pacija(z, τ) −

(
pipj +

1

2
(p,p)gij

)
,

cττi(z + pτ, τ) = cττi(z, τ) − 2pacτai(z, τ) + papbcabi(z, τ) + (p,p)pi ,

cτττ(z + pτ, τ) = cτττ(z, τ) − 3pacττa(z, τ) + 3papbcτab(z, τ) − papbpccabc(z, τ)

−
3

4
(p,p)2 .

The ∆(i) have the following transformation properties:

∆
(3)
ijrs(z + pτ, τ) = ∆

(3)
ijrs(z, τ) ,

∆
(2)
ijk(z + pτ, τ) = ∆

(2)
ijk(z, τ) + pa∆

(3)
ijka(z, τ) ,

∆
(1)
ij (z + pτ, τ) = ∆

(1)
ij (z, τ) + pa

{
∆

(2)
ija(z, τ) + ∆

(2)
jia(z, τ)

}
+ papb∆

(3)
ijab(z, τ) ,

We are now in the position to rehearse the main theorem. If we have a full
N -dimensional weight lattice, then ∆(3) is doubly periodic in all z variables and
if we can show it has no poles then it must be a function of τ alone. The modu-
larity properties of ∆(3) then imply that it must be zero. Repeating the argument
sequentially for ∆(2) and then ∆(1) will give the desired result. To proceed further
requires the examination of the singularity properties of the ∆(i) .

4. Singularity properties

To study the singularity properties of the ∆(i) we require a more detailed analysis
of these functions. Using equation (9) and Proposition 11 one obtains:
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∆(1) = ∆(1)(u,v)

= −(u,v)
∑

α∈U

hαf (0,3)(zα, τ)

+
∑

α,β∈U

hαhβ(α, β)(α,v)

[
+(β,u)f (2,1)(zβ , τ) f (2,1)(zα, τ)
−(α,u)f (1,2)(zβ , τ) f (3,0)(zα, τ)

]

∆(2) = ∆(2)(u,v,w)

=
∑

α∈U

hα [(u,v)(α,w) − (w,v)(α,u)] f (1,2)(zα, τ)

+
∑

α,β∈U

hαhβ(α, β)(α,v) [(α ∧ β)(u,w)] f (2,1)(zβ , τ) f (3,0)(zα, τ)

∆(3) = ∆(3)(u,v,w,x)

=
∑

α∈U

hα

[
+(α,v)(α,w)(u,x) − (α,x)(α,w)(u,v)
+(α,u)(α,x)(v,w) − (α,u)(α,v)(w,x)

]
f (2,1)(zα, τ)

−
1

2

∑

α,β∈U

hαhβ(α, β)[(α ∧ β)(u,w)][(α ∧ β)(v,x)]f (3,0)(zα, τ)f (3,0)(zβ , τ) ,

where (α ∧ β)(u,v) = (α,u)(β,v) − (α,v)(β,u) .
The only derivative of f that gives rise to a pole is the f (3,0) derivative; all other

derivatives are analytic in z - this following from (6). Therefore the only parts of the
∆(i) that could contribute to a singularity are those which contain this derivative.

Proposition 16. Let Πα denote a plane through the origin containing the vector
α and α⊥ a vector in Πα perpendicular to α . Then, at (α, z) = 0:

• ∆(1)(u,v) has no pole if the scalar equation

(12)
∑

β∈Πα∩U

hβ(α, β)(β, α⊥)2n+1 = 0 , n = 1 , 2 , . . . ,

holds.
• ∆(2)(u,v,w) has no pole if the bilinear form equation

(13)
∑

β∈Πα∩U

hβ(α, β)(α ∧ β)(β, α⊥)2n = 0 , n = 1 , 2 , . . . ,

holds.
• ∆(3)(u,v,w,x) has no pole if the 4-linear form equation

(14)
∑

β∈Πα∩U

hβ(α, β)(α ∧ β) ⊗ (α ∧ β)(β, α⊥)2n+1 = 0 , n = 1 , 2 , . . . ,

holds.
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Here

(α ∧ β)(u,v) = (α,u)(β,v) − (α,v)(β,u)

and

(α ∧ β) ⊗ (α ∧ β)(u,v,w, z) = [(α ∧ β)(u,v)] [(α ∧ β)(w,x)] .

Proof The only third derivative of f which contains a pole is the f (3,0)-derivative
and hence the only part of ∆(1) that could contain poles is the term

∑

α,β∈U

hαhβ(α, β)(α,v)(α,u)f (1,2)(zβ)f (3,0)(zα) .

Since f (3,0) only has a simple pole the term involving the poles is, up to a non-zero
constant,

∑

α∈U

hα(α,u)(α,v)

(z, α)

∑

β∈U

hβ(α, β)f (1,2)(zβ) .

The function f (1,2)(zβ) is odd and hence may be written as
∑∞

n=0 An(τ)(z, β)2n+1

(the explicit expressions for the non-zero functions An are not required - they may
be derived from Proposition 8). Thus a sufficient condition for the absence of poles
is, for arbitrary α ∈ U :

(α, z) divides
∑

α fixed, β∈U

hβ(α, β)(β, z)2n+1 , n = 0 , 1 , . . . .

Note that this is automatically satisfied if n = 0 by the first condition in Definition
5. This sum may be rewritten as sums over vectors in 2-planes Πα containing α ,
and hence a sufficient condition for the absence of poles is, for arbitrary α ∈ U :

(α, z) divides
∑

β∈Πα∩U

hβ(α, β)(β, z)2n+1 , n = 1 , 2 , . . . .

On decomposing each β in the plane Πα as β = µα+να⊥ (so ν = (β, α⊥)/(α⊥, α⊥))
one finds that all terms in the binomial expansion of (β, z)2n+1 contain a (α, z)-
term except the final [ν(z, α⊥)]2n+1-term. Thus a sufficient condition condition for
the absence of poles in ∆(1) is

∑

β∈Πα∩U

hβ(α, β)(β, α⊥)2n+1 = 0 , n = 1 , 2 , . . . .

The proof of the ∆(2) condition is identical: f (2,1) is an even function, and the
lowest term vanishes on using the first condition in Definition 5.

The function ∆(3) contains a term

∑

α ,β∈U

hαhβ(α, β) [(α ∧ β)(u,w)] [(α ∧ β)(v,x)]
1

(α, z)

1

(β, z)
.

This vanishes by definition of a complex Euclidean ∨-system [15] . The proof of the
remaining ∆(3) condition is identical to the above: f (3,0) is an odd function, and
the lowest term vanishes on using a polarized version of condition (11) .

�
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5. The Main Theorem

We can now draw the various components together, but first we define an elliptic
∨-system.

Definition 17. Let U be a complex Euclidean ∨-system. An elliptic ∨-system is a
complex Euclidean ∨-system with the following additional conditions:

•
∑

α∈U
hα(α, z)4 = 3(z, z)2 ;

• The three conditions in Proposition 16 hold;

• There exists a full N -dimensional weight lattice of vectors p such that
(p, α) ∈ Z for all α ∈ U .

Examples of elliptic ∨-systems will be constructed in the next section. With this
definition in place one arrives at the main theorem.

Theorem 18. Let U be an elliptic ∨-system. If h∨
U

= 0 then the function

(15) F (u, z, τ) =
1

2
u2τ −

1

2
u(z, z) +

∑

α∈U

hαf ( zα, τ)

satisfies the WDVV equations. If h∨
U
6= 0 then the modified prepotential

(16) F −→ F +
10 (h∨

U
)
2

3(2πi)3
Li3(1, q)

satisfies the WDVV equations.

Proof From the conditions in the definition of an elliptic ∨-system and Propo-
sition 15 it follows that ∆(3) is doubly periodic in all z-variables, and from the
conditions in Proposition 16 it follows that it has no poles. It therefore must be a
function of τ alone. From Proposition 13 it follows that ∆(3) is a modular function
of degree 2 and from Proposition 13 it follows that it contains only positive powers
in its q-expansion. Hence it is a modular form of degree 2 and hence must be zero.

This argument can now be repeated for ∆(2) (a modular function of degree 3
with only positive powers in its q-expansion and hence a modular form of degree 3
and so must be zero).

Finally, the same arguments implies that ∆(1) is a modular form of degree 4,
and hence it must be a multiple of the modular form E4(τ) . Thus

∆(1)(u,v) = m(u,v)E4(τ) .

To find m(u,v) one just requires the O(1)-terms in the q-expansion of ∆(1) . On
using equation (7) one finds that

m(u,v) =
∑

α,β∈U

hαhβ(α, β)(α,v)(β,u)

(
−

1

12

)2

,

=
1

36
(h∨

U)
2

(u,v).

Hence

∆(1) =
1

36
(h∨

U)
2

E4(τ) (u,v).
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Thus if h∨
U

= 0 then ∆(i) = 0 for i = 1 , 2 , 3 and hence (15) satisfies the WDVV
equations.

If h∨
U
6= 0 one has to modify the ansatz for F :

F −→ F + µ
1

(2πi)3
Li3(1, q) .

This change only effects cτττ and hence the above argument on the vanishing of
∆(3) and ∆(2) is unchanged. With this new ansatz ∆(1) undergoes a slight change:

∆(1) −→ ∆(1) − µ
1

120
E4(τ) (u,v) ,

on using (4). Thus if

µ =
10

3
(h∨

U)
2

then the modified ∆(1) is zero and hence (16) satisfies the WDVV equations. �

5.1. Rational and Trigonometric Limits. From the leading order behaviour,
obtained from Proposition 8 ,

f = −
1

(4πi)
z2 log z as z → 0 ,

and

f ≃
1

(2πi)3
Li3

(
e2πiz

)
+

1

12
z3 as q → 0

one may obtain rational and trigonometric solutions, of lower dimension, of the
WDVV equations.

Proposition 19. Given an elliptic ∨-system U the following are solutions of the
WDVV equations:

Rational limit

F rational =
∑

α∈U

hα(α, z)2 log(α, z) .

The metric in this case is the standard Euclidean inner product on h .

Trigonometric limit I

If h∨
U

= 0 then

F trig =
∑

α∈U

hαLi3

(
e2πi(z,α)

)
.

The metric in this case is the standard Euclidean inner product on h .

Trigonometric limit II

If h∨
U
6= 0 then

F trig =
1

6
u3 −

1

2
u(z, z) +

1

(2πi)3

(
3

h∨
U

) 1
2 ∑

α∈U

hαLi3

(
e2πi(z,α)

)
.

In this case one has a covariantly constant unity vector field ∂u and hence the metric
in this case g = du2 − (dz, dz) .

The proof just involves the examination of the associator ∆(3) under the above
mentioned limits.
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6. Examples of elliptic ∨-systems

In this section we construct examples of elliptic ∨-systems based on a Weyl group
W . Recall that by assumption, if α ∈ U then −α ∈ U. We now also assume that
the constants hα are Weyl invariant, i.e. hw(α) = hα for w ∈ W . We denote the
number of vectors in U by |U| . The calculations for specific groups will be done
using the standard notion for roots and weights, see for example [16].

Two classes of examples will be given, the first where U = RW (where RW is the

root system of W ) and the second where U = RW ∪Rirreg
W , where Rirreg

W contains
a set of W -invariant vectors that form an irregular orbit under the action of W .
We first construct W -invariant sets of vectors (and constants hα) satisfying the two
conditions

∑

α∈U

hα(α, z)4 = 3(z, z)2 ,(17)

∑

α∈U

hα(α,u)(α,v) = 2h∨
U(u,v)(18)

and then check that the conditions in Proposition 16 are satisfied, which will be
done with the help of the following lemma. Recall that these conditions involve
summing over vectors in the plane Πα ∩ U . In the cases to be discussed here these
vectors occur in pairs, related by certain reflections, and the corresponding terms
in the sum cancel. Let σαβ denote the reflection of the vector β in the line with
normal vector α . The pairs in the set of vectors Πα ∩ U will occur in two types:

����*

HHHHY

-

σαβ β

α

Type A: α ∈ RW

����*

HHHHj

-

σβ⊥α

α

β = α + σβ⊥α

Type B

Type A pairs are very familiar: they occur in Weyl group (indeed, Coxeter group)
root systems (with certain special angles). Type B pairs will occur when an extra
set of Weyl invariant vectors is appended to the root system - see Section 6.2.
Both these types of configuration appear in ∨-systems and deformed root systems
[7, 14, 15, 32].

Lemma 20. Let α ∈ U and suppose that the terms in the sums
∑

β∈Πα∩U
occur in

pairs of Type A or Type B. Then the conditions in Proposition 16 are satisfied:

(a) for type A configurations if and only if hβ = hσαβ ;

(b) for type B configurations if and only if (α, β)hβ = (α, α − β)hσ
β⊥ α .

Proof

Consider the first condition in Proposition 16, namely equation (12), and consider
the partial sums:



WEYL GROUPS AND ELLIPTIC SOLUTIONS OF THE WDVV EQUATIONS 21

Type A

ΞA = hβ(α, β)(α⊥, β)n + hσαβ(α, σαβ)(α⊥, σαβ)n ;

Type B

ΞB = hβ(α, β)(α⊥, β)n + hσ
β⊥α(α, σβ⊥α)(α⊥, σβ⊥α)n .

It is easy to show that ΞA = 0 if and only if hβ = hσαβ . Similarly one may show
(and here the condition that β = α + σβ⊥α is used) that ΞB = 0 if and only if

(19) (α, β)hβ = (α, α − β)hσ
β⊥α

The full sum is made up of sums of such paired-terms, and hence is zero. Repeating
the argument for the terms that appear in equations (13) and (14) yields no further
conditions.

�

Note that we have assumed that the hα are Weyl invariant and hence for type A
configurations the conditions in Proposition 16 are automatically satisfied with no
extra conditions.

To illustrate this we begin with the simplest case, where W = A1 , which will
reproduce the examples constructed earlier.

Example 21. W = A1

• |U| = 2
Let U = RA1 = {±α} (normalized so that (α, α) = 2). Then conditions

(17) and (18) imply that

hα =
3

8
, h∨

A1
=

3

4

(note their ratio is 2, which is the (dual) Coxeter number of A1). The pole
conditions are vacuous in this case. This gives solution (8).

• |U| = 4
Let U = {±α,±α̃} with (α, α) = 2 , (α̃, α̃) = ν . Then conditions (17)

and (18) imply that

8hα + 2ν2hα̃ = 3 ,

2hα + νhα̃ = h∨
U .

Without loss of generality let hα = 1
2 . Then

hα̃ = −
1

2ν2
, h∨

U = 1 −
1

2ν
.

Again the pole conditions are vacuous. The choice ν = 1
2 is special (h∨

U
= 0)

and leads to the solution obtained in Corollary 10.

6.1. The case U = RW .

In this case it follows from general theory that (18) is satisfied for all Weyl groups
(if hα = 1 for all roots then h∨

U
is just the dual Coxeter number of W ). Since the

quartic expression
∑

hα(α, z)4 is Weyl invariant, by Chevellay’s Theorem (Theorem
4) it may be written in terms of fundamental invariant polynomials of degree 2 and
degree 4, i.e. ∑

hα(α, z)4 = A [s2(z)]
2

+ Bs4(z)
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if such polynomials exist. The quadratic polynomial s2 exists for all groups W ;
one may take s2(z) = (z, z) . Invariant polynomials of degree 4 do not exist for
W = A2 , E6,7,8 , F4 , G2 . Thus for these groups it follows immediately that (17) is
satisfied. By direct calculation one may show that for the remaining Weyl groups,
W = AN≥3 , BN , DN (where such an invariant polynomial does exist) condition

(17) fails, except for B2 where it holds if a specific relationship between h(long) and
h(short) exists. Thus, in general, for the three infinite families of groups, condition
(17) fails and one has to append an extra set of Weyl-group invariant vectors in
order to satisfy this condition: this will be done in the next section.

Since the constants hα are Weyl invariant the analysis decomposes into cases
labeled by the number of independent Weyl orbits:

• For W = A2 , E6 , E7 , E8 one has a single Weyl orbit, so the constants
hα are all identical. The values of this constant, and the constant h∨

U
are

tabulated below:
Weyl group A2 E6 E7 E8

hα
1

3

1

6

1

8

1

12

h∨
U

1 2
9

4

5

2
(note, h∨

U
/hα=(dual) Coxeter number, as required).

• For W = B2 , G2 , F4 one has two Weyl orbits, labeled by short and long
roots. By direct computation one finds that conditions (17) and (18) are
satisfied with the following data:

Weyl group B2 G2 F4

h(long) 1

4

1 − h

18

3 − h

6

h(short) 1
3h− 1

6

2h − 3

3

h∨
U

3

2
h h

It remains now to check the conditions appearing in Proposition 16. It is well known
that for a root system RW the configurations Πα ∩ RW are two dimensional root
systems, namely one of RA1×A1 ,RA2 ,RB2 or RG2 , and all of these configurations
are of type A. Hence by Lemma 20 these are elliptic ∨-systems and hence provide
solutions of the WDVV equations.

6.2. The case U = RW ∪Rirreg
W . We now turn our attention to the three infinite

families, where one has to append an extra set of vectors to the standard roots in
order to satisfy condition (18). Note the the Weyl groups A1 , A2 and B2 appear
to be special in the sense that there are solutions with both U = RW and U =
RW ∪Rirreg

W . For AN≥3 and BN≥3 condition (18) fails for U = RW .

6.2.1. The case W = AN≥2.
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Let z =
∑N+1

i=1 ziei , with
∑N+1

i=1 zi = 0 . With the later condition the following
identities immediately follow:

1

2

∑

i6=j

(zi − zj)2 −
(N + 1)

2

∑

i

{
(zi)2 + (−zi)2

}
= 0 ,

1

2

∑

i6=j

(zi − zj)4 −
(N + 1)

2

∑

i

{
(zi)4 + (−zi)4

}
= 3

(
∑

i

(zi)2

)2

.

From these one may obtain the α and hα satisfying conditions (17) and (18) on
using the standard Euclidean inner product. Let

α(ij) = ei − ej ,

β(i) =
1

(N + 1)


Nei −

∑

j 6=i

ej




(so (α(ij), z) = zi − zj and (β(i), z) = zi). Note both these vectors lie on the

hyperplane
∑N+1

i=1 zi = 0 . With these it follows that U = RAN
∪Rirreg

AN
where:

RAN
= {α(ij) , i 6= j} , hα = 1/2 if α ∈ RAN

;

Rirreg
AN

= {±β(i), , i = 1 , . . . N + 1} , hα = −(N + 1)/2 if α ∈ Rirreg
AN

.

Note that RAN
is just the root system for AN . The geometry of this configuration

will now be discussed.
Let σαβ denote the reflection of β in the plane perpendicular to α . Then

σα(ij)β(i) = β(i) −
2(α(ij), β(i))

(α(ij), α(ij))
α(ij) ,

= β(i) − α(ij) ,

= β(j) ,

σα(ij)β(k) = β(k) , i, j, k distinct .

Thus the set Rirreg
AN

is invariant under the action of W (which is generated by

reflections defined by the vectors in RAN
). Thus for N ≥ 3 the Weyl orbit of an

element of Rirreg
AN

is smaller (since |Rirreg
AN

| = 2(N + 1)) than the size of the orbit

of a generic vector (which would be |AN | = (N + 1)!). Thus Rirreg
AN≥2 consists of the

union of two irregular orbits

Rirreg
AN≥2

∼= {+β(i)|i = 1 , . . . , N + 1} ∪ {−β(i)|i = 1 , . . . , N + 1} .

There are certain degeneracies if N = 1 or 2 : if N = 1 then β(1) = −β(2) and
hence the set {±β(i)} double counts the vectors (this degeneracy was removed in the

earlier discussion of the A1 solution); if N = 2 then |Rirreg
AN

| = |RAN
| = (N + 1)! .

In fact this case coincides with the G2 example above, i.e. RG2
∼= RA2 ∪Rirreg

A2
for

a specific value of the constant h , namely h = 0 .
Note that since (β(i), α(jk)) = 0 and (β(i), α(ij)) = 1 the set Rirreg

AN
consists of

vectors from the weight lattice of AN . In terms of fundamental weights

∆(i) =

i∑

r=1

er −
i

(N + 1)

N+1∑

r=1

er
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θ
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−β(i)

+β(j)

−β(j)

+β(i)

α(ij) = β(i) − β(j)α(ji) = β(j) − β(i)

cos θ = − 1
N

Figure 1. The configuration UAN
∩ Span{β(i) , β(j)}

one has

Rirreg
AN

∼=
{
±w(∆(N)) : w ∈ W

}

(note that ±∆(1) also lie in these two orbits). The orbits of other fundamental
weights form other irregular orbits.

Furthermore, if N ≥ 3 one obtains the configurations

U ∩ Span{α(ij), α(rs)} = RA1×A1 , {i, j} ∩ {r, s} 6= ∅ ,

U ∩ Span{α(ij), α(ik)} = RA2 , i, j, k distinct

together with the new configuration

U ∩ Span{β(i) , β(j)} = {±β(i) ,±β(j) ,±α(ij)} .

The geometry of this new configuration is shown in Figure 1. This is precisely a type
B configuration, and the condition (19) is satisfied, since α = β(i) , hα = −(N +1)/2
and β = α(ij) , hβ = 1/2. Hence by Lemma 20 we have an elliptic ∨-system and
hence a solution to the WDVV equations.

6.2.2. The case W = BN .

The dual prepotential for the Jacobi group orbit space Ω/J(BN ) may be calculated
in the same was as the Ω/J(AN ) dual prepotential was derived in Theorem 6 (see
also Example 27), and from this the set U and the constants hα may be extracted.

Given this origin of the set one might expect that it should be related to the
root system RBN

. It turns out that one may describe this set in two ways: either
in terms of the root system RBCN

or in terms of the root system RCN
(which is,

of course, dual to the root system RBN
) together with an irregular orbit Rirreg

CN
.

Consider the following identities3:

∑

i6=j

(zi − zj)2 + (zi + zj)2 +

N∑

i=1

(2zi)2 − 4N

N∑

i=1

(2zi)2 = 0 ,

∑

i6=j

(zi − zj)4 + (zi + zj)4 +

N∑

i=1

(2zi)4 − 4N

N∑

i=1

(2zi)4 = 12

(
∑

i

(zi)2

)2

.

3Note the condition
P

zi = 0 used in the last section is not used in this section.
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Figure 2. The configuration UBN
∩ Span{ei , ej}

On defining the inner product to be twice the standard Euclidean product (that
is, (z, z) = 2

∑
i(z

i)2) one may obtain the α and hα satisfying conditions (17) and
(18).

In terms of the root system RBCN
, one has UBN

= RBCN
where

RBCN
=

{
1

2
(±ei ± ej) , i 6= j

}
∪ {±ei} ∪

{
±

1

2
ei

}

and

hα =





1
2 if α is a long root ,
1 if α is a middle root ,

−2N if α is a short root .

Alternatively (and this provides a description that is closer to the AN configuration
above)

U = RCN
∪Rirreg

CN
,

= R∨
BN

∪R∨ irreg
BN

where:

RCN
= { 1

2 (±ei ± ej) , i 6= j} ∪ {±ei} , hα =

{
1 if α short
1/2 if α long

}
if α ∈ RCN

;

Rirreg
CN

= {± 1
2ei} , hα = −2N if α ∈ Rirreg

CN
.

As in the AN case, Rirreg
CN

is an irregular orbit (a single orbit in this case):

Rirreg
CN

= {w(∆(N))|w ∈ W}

for a certain fundamental weight ∆(N) .
In either case, the only new two dimensional configuration on vectors is UCN

∩
Span{ei , ej}. This is shown in Figure 2, where the vectors of Rirreg

CN
have been

displaced slightly for visual reasons (this is actually the BC2 system). The proof
that this is an elliptic ∨ system follows the AN case and will be omitted. It also
follows from the Hurwitz space description that will be given in Section 8.2 .
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6.2.3. The case W = DN .

The DN configurations are combinatorially quite complicated, as, even at N = 5
several Weyl orbits of fundamental weights have to be appended to the basic root
system RDN

in order to satisfy (17) and (18). Some of the resulting configurations
Πα ∩ U are not of Type A and Type B. This does not mean that the conditions in
Proposition 16 must be false - there may be other reasons why the various terms
could vanish.

In the N = 4 case U = RD4 ∪ Rirreg
D4

which coincides with the F4 example
considered above, with the long roots of F4 being the roots of D4 and the short
roots being interpreted as the irregular orbits of the fundamental weights of D4 .
Clearly more work is required to construct an example of a DN elliptic ∨-system.

The results in this section have been obtained on a case-by-case basis. It would be
nice if there was a more abstract derivation of the results.

7. Frobenius-Stickelberger Identities

Hidden within the vanishing of the ∆(i) are a number of interesting functional
identities satisfied by the various third derivatives of the elliptic trilogarithm, the
simplest of these reducing to 19th century ϑ-function identities. We build up to
these by first considering the rational and trigonometric versions. Given non-zero
a , b , c ∈ C such that a + b + c = 0 then

1

a
.
1

b
+

1

b
.
1

c
+

1

c
.
1

a
= 0

and
cot(a) cot(b) + cot(b) cot(c) + cot(c) cot(a) = 1 .

Such identities are used in the direct verification that the rational (1) and trigono-
metric (2) prepotentials satisfy the WDVV equations. The elliptic version (where
the dependence on τ has been suppressed for notational convenience) is





f (3,0)(a)f (3,0)(b)

+f (3,0)(b)f (3,0)(c)

+f (3,0)(c)f (3,0)(a)





−
{
f (2,1)(a) + f (2,1)(b) + f (2,1)(c)

}
= 0

Using (5) this may be written in terms of ϑ-functions4:

ϑ′
1(a)

ϑ1(a)

ϑ′
1(b)

ϑ1(b)
+

ϑ′
1(b)

ϑ1(b)

ϑ′
1(c)

ϑ1(c)
+

ϑ′
1(c)

ϑ1(c)

ϑ′
1(a)

ϑ1(a)
+

1

2

[
ϑ′′

1 (a)

ϑ1(a)
+

ϑ′′
1(b)

ϑ1(b)
+

ϑ′′
1(c)

ϑ1(c)

]
=

1

2

ϑ′′′
1 (0)

ϑ′
1(0)

where a + b + c = 0 . With the identification a = (α, z) , b = (β, z) , c = −(α + β, z)
these identities may be seen as identities connected to the A2 Coxeter group, with
α and β being the positive roots. This immediately motivates the following:

4 This formula was found by the author during the researches that led to [27] and it has also
appeared recently, with proof, in the work of Calaque, Enriques and Etingof [6]. However it is a
classical formula; in terms of Weierstrass functions it is just the well known Frobenius-Stickelberger
equation [34]

(ζ(a) + ζ(b) + ζ(c))2 = ℘(a) + ℘(b) + ℘(c) , (a + b + c = 0)

re-written in terms of ϑ-functions, an observation due to Prof. H.W.Braden.
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Lemma 22. Let R be the root system for the 2-dimensional Coxeter groups A2 , B2

or G2 , with the standard normalization for α , β positive simple roots:

A2 : (α, α) = (β, β) = 2 , (α, β) = −1 ,

B2 : (α, α) = 2 , (β, β) = 1 , (α, β) = −1 ,

G2 : (α, α) = 6 , (β, β) = 2 , (α, β) = −3 .

Then ∑

α6=β∈R+

(α, β)f (3,0)(zα, τ) . f (3,0)(zβ , τ) +
∑

α∈R+

kαf (2,1)(zα, τ) = 0 ,

where:

• A2 : kα = 1 for all roots;

• B2 : kshort = 2 , klong = 1;

• G2 : kshort = 10 , klong = 6.

The proof is entirely standard and is omitted. Many other functional identities
may be derived using the same ideas. Rather than give a full list we present two of
the A2 identities:





f (3,0)(x + y)
[
f (2,1)(x) − f (2,1)(y)

]

+f (3,0)(y)
[
f (2,1)(x + y) − f (2,1)(x)

]





+f (1,2)(x)−
1

2
f (1,2)(y)+

1

2
f (1,2)(x+y) = 0

and





f (3,0)(x)
[
f (1,2)(x + y) − f (1,2)(y)

]

+f (3,0)(y)
[
f (1,2)(x + y) − f (1,2)(x)

]

−
2

3
f (3,0)(x + y)

[
f (1,2)(x) + f (1,2)(y)

]





+





2

3
f (2,1)(x + y)f (2,1)(x)

+
2

3
f (2,1)(x + y)f (2,1)(y)

−
8

3
f (2,1)(x)f (2,1)(y)





+
10

9
f (0,3)(x + y) = −

1

108
E4(τ) .

Clearly there is much scope to investigate such neo-classical functional identities.
More identities of these type may be found in [31] .

8. Jacobi Group Orbit Spaces

Mention has been made a number of times to Jacobi groups and their orbit
spaces, but so far these have not been defined. In this section this is rectified
and in addition the construction of the Frobenius manifold structure on such orbit
spaces will be outlined. In particular, using an alternative description of such spaces
as specific Hurwitz spaces we construct the dual prepotentials for the Weyl groups
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AN and BN , thus proving that the examples of elliptic ∨-systems constructed
earlier correspond to Jacobi group orbit spaces. This then motivates a conjecture
for arbitrary Weyl group.

8.1. Jacobi groups and Jacobi forms. The material in this section will closely
follow [2], which in turn relies heavily on the fundamental papers of Wirthmüller
[33] and Eichler and Zagier [12]. We begin by the definition of a Jacobi form.
These play the same role in the construction of the orbit space as the symmetric
polynomials do in the original Saito construction - they provide coordinates on the
orbit space.

Definition 23. Let W be a finite Weyl group with root lattice Q and let g be the
corresponding Lie algebra with Cartan subalgebra h . A Jacobi form of weight k ∈ Z

and index m ∈ Z is a holomorphic function φ : h ⊕ H → C with the following
properties:

φ(z + q, τ) = φ(z, τ) ,

φ(z + qτ, τ) = e−2πim(q,z)−πim(q,q)τ . φ(z, τ) , for all q ∈ Q ,

φ

(
z

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)k . ecπim(z,z)/(cτ+d) . φ(z, τ) ,

φ(w.z, τ) = φ(z, τ) , for all w ∈ W

and φ(z, τ) is a locally bounded function as ℑm(τ) → +∞ .

Such forms are the elliptic analogues of the W -invariant polynomials and they
too satisfy a Chevalley-type theorem.

Following Bertola [2] , one can defined a new function φ(u, z, τ) = emuφ(z, τ)
defined on the Tits cone Ω ∼= C ⊕ h ⊕ H . This is also referred to as a Jacobi form
and the space of Jacobi forms will be denoted JW

k,m . The Jacobi group J(g) itself

generates the above transformations. The full details are not required here: J(g)
is the semi-direct product W ⋊ SL(2, Z) where W = W ⋊ HR where W is a Weyl
group and HR the Heisenberg group obtained from the root space R of W . The
precise definitions of the various actions may be found in [2, 33].

It is well known that the ring of modular forms is a free graded algebra over
C generated by the Eisenstein series E4 and E6 , i.e. M• =

⊕
k Mk , where the

subspace of modular forms of weight k is

Mk = C[Ea
4Eb

6, ∀a , b ∈ N such that 4a + 6b = k] .

The ring of Jacobi forms is particularly nice; it satisfies an analogue of Chevalley’s
Theorem (Theorem 4) :

Theorem 24. [33] Given the Jacobi group associated to any finite dimensional
simple Lie algebra g of rank N (except for possibly E8):

• the bi-graded algebra of Jacobi forms JW
•,• =

⊕
k,m JW

km is freely generated

by N + 1 fundamental Jacobi forms {φ0 , . . . , φN} over the graded ring of
modular forms M• ,

JW
•,• = M•[φ0 , . . . , φN ] ;
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• each

φj ∈ JW
−k(j),m(j)

where −k(j) ≤ 0 , m(j) > 0 are defined as follows:
– k(0) = 1 and k(j) , j > 0 are the degrees of the generators of the

invariant polynomials in (4) ;
– m(0) = 1 and m(j) , j > 0 are the coefficients in the expansion of the

highest coroot α̃∨ ,

α̃∨ =

N∑

j=1

m(j)α∨
j

where α̃ is the highest root and α∨
j a basis for R∨ .

Note that JW
•,0

∼= M• . It will also be useful to define φ−1 = τ , even though
it is not a Jacobi form. These Jacobi forms become the coordinates on the orbit
space Ω/J(g) . Before turning to the explicit construction of such forms we prove
the following simple result on the Jacobian of the transformation between the two
coordinate systems {u, z, τ} and {φ−1 , φ0 , . . . , φN} .

Proposition 25. Let

Jac(u, z, τ) =
∂{φ−1 , φ0 , . . . , φN}

∂{u, z, τ}
.

Then Jac has the following transformation properties:

1

2πi

∂

∂u
Jac(u, z, τ) = h∨ Jac(u, z, τ) ,

Jac(u, z + q, τ) = Jac(u, z, τ) ,

Jac(u, z + qτ, τ) = e−2πih∨(q,z)−πih∨(q,q) . Jac(u, z, τ) ,

Jac(u, z, τ + 1) = Jac(u, z, τ) ,

Jac

(
u,

z

τ
,−

1

τ

)
= τ−|R+

W |eπih∨(z,z)/τ . Jac(u, z, τ) ,

Jac(u, w.z, τ) = det(w) . Jac(u, z, τ) ,

where h∨ is the dual Coxeter number and |R+
W | the number of positive roots. More-

over, up to an overall constant,

(20) Jac(u, z, τ) = e2πih∨u
∏

α∈R+
W

ϑ1(zα, τ)

ϑ′
1(0, τ)

.

These transformation properties may be elevated to a definition of an anti-invariant
Jacobi form. This result is the elliptic version of the well known result Jac(z) =∏

α∈R+
W

zα for Coxeter groups.

Proof By definition, the Jacobian is a determinant, so by using properties of the
determinant, together with the transformation properties of the individual Jacobi
forms given in Proposition 23 the result follows. Various Lie-theory results are
used, such as

h∨ =

N∑

i=0

m(i) , |R+
W | =

N∑

i=1

(k(i) − 1) ,

proofs of which may be found in Kac [17].
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To prove (20) one first proves that the right-hand-side has the same transforma-
tion properties as Jac . Therefore their ratio transformations like a JW

0,0-Jacobi form
(the analytic properties following from those of the ϑ1-function, such as its entire
property). But JW

0,0
∼= M0 and there are no non-trivial degree 0 modular forms and

hence the ratio must be a constant. �

Further properties of the forms may be found in [2, 33]. For the AN and BN

cases there is a very compact way to study the forms by combining them into a
generating function. The invariant polynomials for the AN -Coxeter group may be
obtained via a generating function (a result due to Viète)

N∏

i=0

(v − zi)

∣∣∣∣∣
P

zi=0

= vN+1 +
N−1∑

r=0

(−1)N+1−rsr+1(z)v
r .

Similarly, the AN Jacobi forms may be obtained [2] from a similar expansion of

(21) λAN (v) = e2πiu

∏N
i=0 ϑ1(v − zi, τ)

ϑ1(v, τ)N+1

∣∣∣∣∣
P

zi=0

as a sum of Weierstrass ℘ functions and their derivatives, their coefficients being the
AN -Jacobi forms. Using the embedding BN ⊂ A2N−1 one may obtain a generating
function for the BN -Jacobi forms:

(22) λBN (v) = e2πiu

∏N
i=1 ϑ1(v − zi, τ)ϑ1(v + zi, τ)

ϑ1(v, τ)2N

These generating functions are not just formal objects, they are holomorphic maps
from the complex torus to the Riemann sphere. This means one can use a Hurwitz
space construction to calculate the dual prepotential.

8.2. Hurwitz spaces. Let Hg,N (k1, . . . , kl) be the Hurwitz space5 of equivalence
classes [λ : L → P1] of N -fold branched coverings λ : L → P1, where L is a compact
Riemann surface of genus g and the holomorphic map λ of degree N is subject to
the following conditions:

• it has M simple ramification points P1, . . . , PM ∈ L with distinct finite
images l1, . . . , lM ∈ C ⊂ P1;

• the preimage λ−1(∞) consists of l points: λ−1(∞) = {∞1, . . . ,∞l}, and
the ramification index of the map λ at the point ∞j is kj (1 ≤ kj ≤ N).

(We define the ramification index at a point as the number of sheets of the covering
which are glued together at this point. A point ∞j is a ramification point if and
only if kj > 1. A ramification point is simple if the corresponding ramification
index equals 2.) The Riemann-Hurwitz formula implies that the dimension of this
space is M = 2g + l + N − 2. One has also the equality k1 + · · · + kl = N . Two
branched coverings λ1 : L1 → P1 and λ2 : L2 → P1 are said to be equivalent if
there exists a biholomorphic map f : L1 → L2 such that λ2f = λ1.

We also introduce the covering Ĥg,N (k1, . . . , kl) of the space Hg,N (k1, . . . , kl)
consisting of pairs

< [λ : L → P
1] ∈ Hg,N (k1, . . . , kl), {aα, bα}

g
α=1 >,

5 Dubrovin [9] uses a slightly different notation. In his notation the Hurwitz space is
Hg;k1−1 ,... ,kl−1 .
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where {aα, bα}
g
α=1 is a canonical basis of cycles on the Riemann surface L. The

spaces Ĥg,N (k1, . . . , kl) and Hg,N (k1, . . . , kl) are connected complex manifolds and
the local coordinates on these manifolds are given by the finite critical values of the
map λ . For g = 0 the spaces Ĥg,N (k1, . . . , kl) and Hg,N (k1, . . . , kl) coincide.

The various metric and multiplication tensors are given in terms of this holo-
morphic map λ : L → P1 (also known as the superpotential) by the following:

Theorem 26. The intersection form and dual multiplication on the Hurwitz space
Hg,N (k1, . . . , kl) are given by the following residue formulae:

g(∂′, ∂′′) =
∑

res
dλ=0

∂′(log λ(v)dv)∂′′(log λ(v)dv)

d log λ(v)
,

c⋆ (∂′, ∂′′, ∂′′′) =
1

2πi

∑
res

dλ=0

∂′(log λ(v)dv)∂′′(log λ(v)dv)∂′′′(log λ(v)dv)

d log λ(v)
.

Here ∂ , ∂′ and ∂′′ are arbitrary vector fields on the Hurwitz space Hg,N (k1, . . . , kl).

The formula for g appeared in [9] while the formula for c⋆ follows immediately from
the results in [10]. Note that with the specific dependence of u in the superpotentials
(21) and (22) we have normalized g and c⋆ so that ∂u is the unity vector field (rather
than 1

2πi∂u). Thus c⋆ (∂u, ∂′, ∂′′) = g(∂′, ∂′′) . This also avoids a proliferation of
(2πi)-factors in the final result.

Certain Hurwitz spaces are isomorphic to certain orbit spaces [9]. For example,

C
N/AN

∼= H0,N+1(N + 1) ,

C
N+1/Ã

(k)
N

∼= H0,N+1(k, N − k) ,

Ω/J(AN ) ∼= H1,N+1(N + 1) .

Thus the tower of generalizations mentioned in the introduction has a unified de-
scription, at least for the AN -cases, in terms of the theory of Hurwitz spaces. This
also leads to a way to expand the tower further via higher genus Hurwitz spaces,
the most natural being the space Hg,N+1(N + 1) . The BN examples come from
introducing a Z2 grading onto the Huwitz space (e.g. the superpotentials above
have a z ↔ −z symmetry).

Example 27.

(a) Using the superpotential (21) one obtains the intersection form and (dual)
prepotential for the AN -Jacobi group orbit space in Theorem 6 above [27]:

g = 2du dτ −
N∑

i=0

(dzi)2

∣∣∣∣∣
P

N
j=0 zj=0

F ⋆(u , z , τ) =
1

2
τu2 −

1

2
u

N∑

i=0

(zi)2

∣∣∣∣∣
P

N
j=0 zj=0

+
1

2

∑

i6=j

f(zi − zj, τ) − (N + 1)
∑

i

f(zi, τ)

where this function is evaluated on the plane
∑N

i=0 zj = 0 .
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(b) Using the superpotential (22) one obtains the intersection form and (dual)
prepotential for the BN -Jacobi group orbit space:

g = 2du dτ − 2

N∑

i=1

(dzi)2 ,

F ⋆(u , z , τ) =
1

2
τu2 − 2u

N∑

i=0

(zi)2

+
∑

i6=j

{
f(zi + zj, τ) + f(zi − zj, τ)

}

+
∑

i

f(2zi, τ) − 2N
∑

i

f(zi, τ) .

Combining this with the earlier results on elliptic ∨-systems gives:

Theorem 28. The elliptic ∨-systems given in sections (6.2.1) and (6.2.2) define
prepotentials that are the almost-dual prepotentials associated to the AN and BN

Jacobi group orbit spaces.

The form of this result, coupled with the examples of elliptic ∨-systems leads to
the following conjecture:

Conjecture 29. Let W be a Weyl group. For the Jacobi group orbit space Ω/J(W )
the dual prepotential takes the form (15) with h∨

U
= 0 . Furthermore, U = RW ∪

Rirreg
W (or its dual) and where

Rirreg
W = {w(∆)|w ∈ W} or Rirreg

W = {±w(∆)|w ∈ W}

for some weight vector ∆ .

The conjecture seems plausible. It is true for the AN examples and the BN examples
(if one uses the dual root system) and if all orbit spaces are to behave in the same
generic way in the trigonometric limit then one must have h∨

U
= 0 from the results

of section 5.1.
One possible approach to proving this conjecture would be to show that if a

prepotential F lies at the fixed point of the involutive symmetry then so does the
corresponding almost dual prepotential. Since this is true for the Jacobi group
examples this would then prove the first part of the conjecture, but not the second
part on the structure of the set U . The Saito construction of Jacobi groups has
recently been studied in detail [29]. Perhaps a formulation of a dual version of the
result would provide a proof of the conjecture.

Within the class of elliptic ∨-systems there remains the problem of constructing
examples with h∨

U
= 0 . For W = G2 , F4 one may set h = 0 , but for E6,7,8 one would

have to append an Rirreg
W set of vectors. These cases also remain problematical.

If h = 0 in the G2 case one obtains a dual prepotential that is actually the dual
prepotential for the A2 Jacobi group orbit space, leaving a problem as to what
the correct G2 solution would be. This case lies in the so-called co-dimension one
case and deserves closer study. The G2 Jacobi forms have also been constructed
explicitly [2] so it may be possible to find the dual prepotential in this case by direct
calculation. It is also possible the the dual prepotential is the same in these two
cases: the reconstruction of the Frobenius manifold from the dual picture requires
additional data besides the almost dual prepotential.
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9. Comments

The idea of an elliptic ∨-system may clearly be studied further. As well as
the obvious question on the relationship between the functional ansatz and Jacobi
group orbit spaces summarized in Conjecture 29, there are many other questions
and problems that could be addressed. Given a complex Euclidean ∨-system one
may study their restriction to lower dimensions and the conditions required for the
restricted system to also be a complex Euclidean ∨-system. Clearly the same ques-
tion can be asked for elliptic ∨-systems. Examples along this line may be obtained
from the restriction of the AN and BN Jacobi-group spaces to discriminants. This
is achieved by introducing multiplicities into the AN superpotential (21),

λ(p) = e2πiu
m∏

i=0

(
ϑ1(v − zi, τ)

ϑ1(v, τ)

)ki

,

where
∑m

i=0 ki = N + 1 ,
∑m

i=0 kizi = 0 , or on more general Hurwitz spaces
H1,N(n1 , . . . , nm) and their discriminants. Partial results have been obtained in
[26], and these provide further examples of elliptic ∨-systems. In fact, interest-
ing examples of ∨-system can be found by looking on the induced structures on
disciminants [14, 30] and clearly the same ideas could be applied here.

Possible applications of these solutions should come from Seiberg-Witten theory
and the perturbative limits of such theories. This link is well known for rational
and trigonometric solutions, and the interpretation of the elliptic solutions found
in [27] in terms of a 6-dimensional field theory has been given in [3], and one would
expect similar results for the more general solutions constructed here (though [3]
does use the existence of a superpotential which is lacking for general solutions
constructed here).

The tower of generalizations mentioned in the introduction clearly does not have
to stop at elliptic solutions. An arbitrary Hurwitz space HG,N(k1 , . . . , kl) carries
the structure of a Frobenius manifold and hence an almost-dual structure. An
interesting question is whether or not there is an orbit space construction for these
more general spaces:

H0,N (N) −→ H0,N (k, N − k) −→ H1,N (N) −→ . . . −→ Hg,N (N)

l l l l

CN/AN −→ CN+1/Ã
(k)
N −→ Ω/J(AN ) −→ . . . −→

orbit
space

structure?

It seems sensible to conjecture that such an orbit space exists. One would expect
Siegel modular forms to play a role instead of the modular forms used here. Higher
genus Jacobi forms certain have been studied, but their use has yet to percolate into
the theory of integrable systems. The development, and applications of, the neo-
classical ϑ-function identities studied in Section 7 remains to be done systematically.
Certain higher genus analogues of these identities certainly exist, since there exist
almost-dual prepotentials on these Hurwitz spaces which, by construction, satisfy
the WDVV equations. In the genus 0 and genus 1 cases, the prepotential is very
closely related to the prime form on the Riemann surface. This may be the starting
point for the development of a functional ansatz for the higher genus cases. Central
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to the results presented here are the quasi-periodicity and modularity properties of
the elliptic polylogarithm, and these were obtained from the analytic properties of
this function; the only role the analytic properties play were in the development of
these transformation properties. It would be attractive if one could obtain these
directly from the geometric properties of the prime form. This approach could
then be used in the higher genus case where the analytic properties are likely to be
considerably more complicated.

Mention has been made already of the beautiful paper [6]. It would be interesting
to see if the ideas developed here could be used in the study of KZ and Dunkl-type
systems. The idea would be to study objects such as

∑

α,β∈U

[
f (3,0)(zα)sα , f (3,0)(zβ)sβ

]

where sα and sβ are shift operators. Conjecturally this quadratic term would be

related to linear terms in the function f (2,1) . The rational limit would then coincide
with the classical work of Dunkl [5]. Such a development would be different to the
elliptic Dunkl operators in the pioneering work of Buchstaber et al. [4]. For a
preliminary discussion of these ideas, see [31] .

Finally, one thing that has been learnt from this work is that on going from
rational and trigonometric structure related to a Weyl group W via the root system
RW to elliptic structures, generalizations based entirely on the use of the root
system RW alone may not suffice.
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