Does Holling's disc equation explain the functional response of a kleptoparasite?

Caldow, R.W.G. and Furness, R.W. (2001) Does Holling's disc equation explain the functional response of a kleptoparasite? Journal of Animal Ecology, 70(4), pp. 650-662. (doi: 10.1046/j.1365-2656.2001.00523.x)

Full text not currently available from Enlighten.

Publisher's URL:


1. Type II functional responses, which can be described by Holling's disc equation, have been found in many studies of predator/prey and host/parasite interactions. However, an increasing number of studies have shown that the assumptions on which the disc equation is based do not necessarily hold. We examine the functional response of kleptoparasitically feeding Arctic skuas (Stercorarius parasiticus L.) to the abundance of fish-carrying auks and, by examination of the assumptions of the disc equation, test whether it can explain the function. 2. The rate at which individual skuas make successful chases is a decelerating function of the abundance of auks. However, it would appear that this is not determined by factors that influence their probability of success, but by the rate at which they initiate chases. This too is a decelerating function of the abundance of auks, Arctic skuas have a Type II functional response. 3. Although Arctic skuas exhibited a direct numerical response there was no evidence that components of predation connected to the density of predators (direct prey stealing, or increased host avoidance) had any effect on the rate at which individual skuas made chases or were successful in their chases, We conclude that the observed functional response is free from any effects of interference. 4. We suggest that abnormally high levels of foraging effort expended by breeding skuas and their poor breeding success in the years of observation argue against the limit to the observed functional response being determined by skuas' energetic requirements 5. Several of the assumptions underlying the disc equation do not hold. The duration of chases (handling time) was not a constant; it decreased with increasing host abundance, Moreover, the chase duration predicted by the disc equation, if handling time limited the functional response, was far in excess of that observed. Furthermore, the observed rate of decline in the searching time per victim with increasing host abundance suggested that skuas' instantaneous rate of discovery was also not constant. Possible reasons for these observations are discussed. The basic disc equation may describe Arctic skuas' functional response, but it cannot explain it

Item Type:Articles
Glasgow Author(s) Enlighten ID:Furness, Professor Robert
Authors: Caldow, R.W.G., and Furness, R.W.
Subjects:Q Science > QL Zoology
G Geography. Anthropology. Recreation > GE Environmental Sciences
College/School:College of Medical Veterinary and Life Sciences > School of Biodiversity, One Health & Veterinary Medicine
Journal Name:Journal of Animal Ecology

University Staff: Request a correction | Enlighten Editors: Update this record