High pressure induced spin changes and magneto-structural correlations in hexametallic SMMs

Prescimone, A. et al. (2009) High pressure induced spin changes and magneto-structural correlations in hexametallic SMMs. Dalton Transactions, 25(7), pp. 4858-4867. (doi:10.1039/b902485a)

Full text not currently available from Enlighten.

Publisher's URL: http://www.rsc.org/dalton

Abstract

The first combined high pressure single-crystal X-ray diffraction and high pressure magnetism study of two polymetallic clusters is presented in an attempt to correlate the observed changes in structure with changes in magnetic response without the need for changes in external ligation. At 1.5 GPa the structure of [Mn<sub>6</sub>O<sub>2</sub>(Et-sao)<sub>6</sub>(O<sub>2</sub>CPh(Me)<sub>2</sub>)<sub>2</sub>(EtOH)<sub>6</sub>] (1; Et-saoH<sub>2</sub> = 2-hydroxyphenylpropanone)—a single molecule magnet (SMM) with an effective anisotropy barrier of 86 K—and of [Mn<sub>6</sub>O<sub>2</sub>(Et-sao)<sub>6</sub>(O<sub>2</sub>C-naphth)<sub>2</sub>(EtOH)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub>] 2 both undergo significant structural distortions of their metallic skeletons, which has a direct effect upon the observed magnetic response. The application of hydrostatic pressure on the two compounds (up to 1.5 GPa) flattens the Mn–N–O–Mn torsion angles weakening the magnetic exchange between the metal centres. In both compounds one interaction switches from ferro- to antiferromagnetic, with the Jahn–Teller (JT) axes compressing (on average) and re-aligning differently with respect to the plane of the three metal centres. High pressure dc χMT plots display a gradual decrease in the low temperature peak height and slope, simulations showing a decrease in |J| with increasing pressure with a second antiferromagnetic J value required to simulate the data. The “ground states” change from S = 12 to S = 11 for 1 and to S = 10 for 2. Magnetisation data for both 1 and 2 suggest a small decrease in |D|, while out-of-phase (χM//) ac data show a large decrease in the effective energy barrier for magnetisation reversal.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Murrie, Professor Mark
Authors: Prescimone, A., Milios, C.J., Sanchez-Benitez, J., Kamenev, K., Loose, C., Kortus, J., Moggach, S., Murrie, M., Warren, J.E., Lennie, A.R., Parsons, S., and Brechin, E.K.
College/School:College of Science and Engineering > School of Chemistry
Journal Name:Dalton Transactions
Publisher:Royal Society of Chemistry
ISSN:1477-9226
ISSN (Online):1477-9234
Published Online:07 May 2009

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
399981The effect of high pressure on single-molecule magnetsMark MurrieEngineering & Physical Sciences Research Council (EPSRC)EP/D503752/1Chemistry