On the mechanism of asymmetric allylation of aldehydes with allyltrichlorosi lanes catalyzed by QUINOX, a chiral lsoquinoline N-oxide

Malkov, A. V., Ramirez-Lopez, P., Biedermannova, L., Rulisek, L., Dufkova, L., Kotora, M., Zhu, F. J. and Kocovsky, P. (2008) On the mechanism of asymmetric allylation of aldehydes with allyltrichlorosi lanes catalyzed by QUINOX, a chiral lsoquinoline N-oxide. Journal of the American Chemical Society, 130(15), pp. 5341-5348. (doi: 10.1021/ja711338ci)

Full text not currently available from Enlighten.

Abstract

Allylation of aromatic alclehydes 1a-m with allyl- and crotyl-trichlorosilanes 2-4, catalyzed by the chiral N-oxide QUINOX (9), has been found to exhibit a significant dependence on the electronics of the aldehyde, with p-(trifluoromethyl)benzaldehyde 1g and its p-methoxy counterpart 1h affording the corresponding homoallylic alcohols 6g,h in 96 and 16% ee, respectively, at -40 degrees C. The kinetic and computational data indicate that the reaction is likely to proceed via an associative pathway involving neutral, octahedral silicon complex 22 with only one molecule of the catalyst involved in the rate- and selectivity-determining step. The crotylation with (E) and (Z)-crotyltrichlorosilanes 3 and 4 is highly diastereoselective, suggesting the chairlike transition state 5, which is supported by computational data. High-level quantum chemical calculations further suggest that attractive aromatic interactions between the catalyst 9 and the aldehyde 1 contribute to the enantiodifferentiation and that the dramatic drop in enantioselectivity, observed with the electron-rich aldehyde 1h, originates from narrowing the energy gap between the (R)- and (S)reaction channels in the associative mechanism (22). Overall, a good agreement between the theoretically predicted enantioselectivities for la and 1h and the experimental data allowed to understand the specific aspects of the reaction mechanism.

Item Type:Articles
Keywords:ALCOHOLS ALDEHYDES allylation APPROXIMATE COULOMB POTENTIALS AROMATIC-ALDEHYDES ASYMMETRIC ALLYLATION AUXILIARY BASIS-SETS CATALYST Chiral COMPLEX COMPLEXES DEPENDENCE ENANTIOSELECTIVE ALLYLATION ENERGIES ENERGY GAUSSIAN-BASIS SETS HIGHLY STEREOSELECTIVE ALLYLATION HOMOALLYLIC ALCOHOLS LEWIS-BASE MECHANISM MOLECULE N-OXIDE ORGANIC-SYNTHESIS ORGANOSILICON COMPOUNDS PATHWAY QUINOX STATE STEP TRANSITION TRANSITION-STATE
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Malkov, Dr Andrei and Zhu, Dr Fujiang and Kocovsky, Professor Pavel
Authors: Malkov, A. V., Ramirez-Lopez, P., Biedermannova, L., Rulisek, L., Dufkova, L., Kotora, M., Zhu, F. J., and Kocovsky, P.
College/School:College of Science and Engineering > School of Chemistry
Journal Name:Journal of the American Chemical Society
ISSN:0002-7863

University Staff: Request a correction | Enlighten Editors: Update this record