References
1. R.F. Ngwompo, Contribution au Dimensionnement des Systèms sur des Critères Dynamiques et Énergétiques—Approche par Bond Graph, Ph.D. Thesis, INSA de Lyon, 1997..
2. R.F. Ngwompo, S. Scavarda and D. Thomasset, Inversion of linear time-invariant siso systems modelled by bond graph. J. Franklin Inst. 333 (B) 2 (1996), pp. 157–174. Abstract | Abstract + References | PDF (782 K) | MathSciNet
3. C.W. Gear and L.R. Petzold, Ode methods for the solution of differential/algebraic systems. SIAM J. Numer. Anal. 21 (1984), pp. 716–728. Abstract-Compendex | MathSciNet
4. K.E. Brenan, S.L. Campbell, L.R. Petzold, Numerical Solution of Initial Value Problems in Differential-Algebraic Equations, North-Holland, New York, 1989..
5. C.W. Gear, An introduction to numerical methods for odes and daes, in: NATO ASI Series, Vol. F69, Springer, Berlin, 1990, pp. 115–126..
6. L.M. Silverman, Properties and application of inverse systems, IEEE Trans. Automat. Control 13 (1968) 436–437..
7. H. Seraji, Minimal inversion, command matching and disturbance decoupling in multivariable systems. Int. J. Control 49 6 (1989), pp. 2093–2121. Abstract-Compendex | MathSciNet
8. A. Isidori, Nonlinear Control Systems: An Introduction, 3rd Edition, Springer, New York, 1995..
9. P.J. Gawthrop, H. Demircioglu and I. Siller-Alcala, Multivariable continuous-time generalised predictive control: a state-space approach to linear and non-linear systems. Proc. IEE Part D 145 3 (1998), pp. 241–250. Abstract-INSPEC | Abstract-Compendex | Full Text via CrossRef
10. H. Chen and F. Allgöwer, A quasi-infinite horizon non-linear model predictive control scheme with guarenteed stability. Automatica 34 10 (1999), pp. 1205–1217.
11. D.C. Karnopp, D.L. Margolis, R.C. Rosenberg, System Dynamics: A Unified Approach, Wiley, New York, 1990..
12. J.U. Thoma, Simulation by Bond Graphs, Springer, Berlin, 1990..
13. J van Dijk. On the role of bond graph causality in modelling mechatronic systems, Ph.D. Thesis, Universitiet Twente, 1994..
14. P.J. Gawthrop and L. Smith, Causal augmentation of bond graphs. J. Franklin Inst. 329 2 (1992), pp. 291–303. Abstract
15. P.J. Gawthrop, Bicausal bond graphs, In: F.E. Cellier, J.J. Granda (Eds.), Proceedings of the 1995 International Conference on Bond Graph Modeling and Simulation (ICBGM’95), Simulation Series, Vol. 27, Las Vegas, USA, Society for Computer Simulation, January 1995, pp. 83–88..
16. P.J. Gawthrop, Control system configuration: Inversion and bicausal bond graphs, in: J.J. Granda, G. Dauphin-Tanguy (Eds.), Proceedings of the 1997 International Conference on Bond Graph Modeling and Simulation (ICBGM’97), Simulation Series, Vol. 29, Phoenix, Arizona, USA, Society for Computer Simulation, pp. 97–102..
17. P.J. Gawthrop, D.J. Ballance, Genevieve Dauphin-Tanguy. Controllability indicators from bond graphs, in: J.J. Granda, F. Cellier (Eds.), Proceedings of the 1999 International Conference on Bond Graph Modeling and Simulation (ICBGM’99), Simulation Series, Vol. 31, San Francisco, California, USA, Society for Computer Simulation, January 1999, pp. 359–364..
18. R.F. Ngwompo, S. Scavarda, D. Thomasset, Structural invertibility and minimal inversion of multivariable linear systems—a bond graph approach, in: J.J. Granda, G. Dauphin-Tanguy (Eds.), Proceedings of the 1997 International Conference on Bond Graph Modeling and Simulation (ICBGM’97), Simulation Series, Vol. 29, Phoenix, Arizona, USA, Society for Computer Simulation, January 1997..
19. J. van Dijk and P.C. Breedveld, Simulation of system models containing zero-order causal paths—i. classification of zero-order causal paths. J. Franklin Inst. 328 5/6 (1991), pp. 959–979. Abstract
20. R.C. Rosenberg, State-space formulation for bond graph models of multiport systems. Trans. ASME 93 (1971), pp. 35–40.
21. N. Hogan, Modularity and causality in physical system modelling. Trans. ASME 109 (1987), pp. 384–391. Abstract-INSPEC | Abstract-Compendex
22. P.J. Gawthrop, L.P.S. Smith, Metamodelling: Bond Graphs and Dynamic Systems, Prentice-Hall, Hemel Hempstead, Herts, England, 1996..
23. A. Sharon, N. Hogan and D.E. Hardt, Controller design in the physical domain. J. Franklin Inst. 328 5 (1991), pp. 697–721. Abstract