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Abstract

This paper addresses the problem of recognizing a hu-
man body (HB} posture from a cloud of 3D points acquired
by a Human body scanner. It suggests the wavelet transform
coefficients (WTC) as 3D shape descripiors of the HB pos-
ture. The WTC showed to have a high discrimination power
between posture classes. Integrated within a Bayesian clas-
sification framework and compared with other standard mo-
ments, the WIC showed great capabilities in discriminat-
ing between close postures. The qualities of the WTC fea-
tures were also reflected on its classification rate, ranked

[first when compared with other 3D features.

1. Introduction

Automatic identification of the HB posture from a 3D
scan data, is of interest for many applications exploiting HB
scanner technology. In Anthropological and medical appli-
cations, there is a need to segment the body scan data into
areas corresponding to the functional parts of the body. In
entertainment applications, HB scan are fitted to a generic
model to produce realistic avatars of virtual actors that can
be integrated in movies or video games. The approaches de-
veloped so far [1, 2, 3, 4] present a severe limitation because
they assume a standard posture of the HB(Figure 1.b). Pro-
viding a tool for recognizing the posture will allow to tackle
the segmentation and the model fitting problems in the gen-

eral case of arbitrary postures.
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Figure 1. (a) The standard posture of a human body in a
reference (x, y, z) attached to the scanner. A rotation of the whole
HB is constrained to be around the z axis, affecting only the angle
¢. (b):Meyer wavelet function.
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2. 3D Shape descriptors

The posture data , is a set scattered 3D points represent-
ing the HB surface. Most HB scanners provide a complete
data that covers a large area the body. Global features, par-
ticularly moments are suitable for that case. The moment
features have been extensively used in image analysis and
description [5, 6, 7, 8] However, less work has been done
in the 3D case. One of the reasons, is that most of the
3D Imaging devices do not provide complete data in terms
of surface covering, There have been, nevertheless,some at-
tempts to define frameworks for 3D moments construction.
Sadjadi et al [9] pioneered the development of 3D Geo-
metric moment invariants. They built a family of three in-
variant moments with a degree up to the second-order. Us-
ing the notion of complex moments Lo et @/ [10] con-
structed a family of twelve invariant moments with orders
up to the third degree. In these last works, moments were
used mainly to estimate 3D transformations and their per-
formances were not evaluated for classification tasks. Also,
being not derived from a family of orthogonal functions,
these moments were subject to correlation. Canterakis [11]
extended Zemnike moments to the 3D case, but their perfor-
mances were not put into trial yet. In this work we propose
to investigate the wavelet wansform coefficients (WTC) .
These features have been tested successfully as 2D shape
descriptors [8]. We will show that the WTC can be utilized
for 3D shape description. Derived from an orthogonal fam-
ily of functions, these features are also less redundant and
more informative than non-orthogonal family of moments
[9,10].

3 The WTC descriptors

The Wavelet Transform was introduced by Morlet [12]
as a time-scale analysis tool for non-stationary signals.
Then further developed by many authors [13, 14, 15). The
Wavelet Transform of a function f(r) at the scalea {a > Q)
and the shift b is:  C, = f:o f(rytpzzbyar  where
Yap = 2(TZP) represent a family of functions derived from
the mother wavelet 3(r}. This function is characterized by



a compact support both in the space and the frequency do-
main. The WTC embodies information about the spectrum
of the frequency of f{r} around the position b at a scale a.
The coefficients ¢, constitute the set of projections of the
function f(r) on space spanned by the basis ,;.

Let consider f{r,8.¢) a 3D binary representation for the
cloud of 3D data points in the spherical coordinates. In
its discrete form, f(r,0,¢) is a spherical voxel represen-
tation of the points. Consider a sphere of radius r, the
points distribution at the sphere surface can be described by
the spherical harmonics via the transformation: Fmn(r) =
S T F(r.0,8)Um n(8, ¢)r2sinddfdg, 0 < m < n where
Um,n are the spherical harmonics of order m and n defined
on the unit sphere. they form an orthogonal family [16],
expressed by Um,, = e?"PV,(§) where V,(8) is a polyno-
mial function of order n in cosd and sinf. Fma(r) define
therefore a sort of moments that describe the distribution
of points on the spherical surface of radius r. We con-
sidered the first four spherical harmonic functions namely,
Uoo =1, Up1 = cosh, U1 = e?Psing, Ur,a = ~3e/®sinfcost.

Now what remains is to describe the variation of these
moments in function of r to obtain a 3D description of the
posture. This description should infers a multi-scale aspect
since the differences in the posture distributions manifests
at different scales. This can be seen, by examining for in-
. stance, the pairs of postures (2, 18) and (6, 8) in Figure 2.
For the first pair. difference in data point distribution covers
more than the half of the posture space, whereas it is lim-
ited to the space around the right arm for the second pair.
Being a multi-scale operator, the wavelet transform satis-
fies this requirement. We define therefore the WTC of the
moment functions Fnn(r) as ¢m» = f0°° Frn{rita s (#)dr
The mother wavelet function we utilized is Meyer’s wavelet
[15] (Figure 1.{a), it is highly regular and generates an or-
thogonal basis of function 55. We precise that the WTC
descriptor used, is the module of CT3™.

The invardance of the WTC with respect to translation
and scale is obtained by preprocessing the data in the Carte-
sian space before passing (o the spherical space. From the
cloud of 3D data points a Cartesian voxel grid if formed.
Then the origin of the voxel grid is shifted to the centre of
mass of the data points. The scale invariance is obtained
by affecting the 3D points’ coordinates so that the data vol-
ume defined by the moment mooo =3, Zv 2o, flzy,2) s
equal to Vg, where V; is a predetermined value. The rota-
tion of the whole HB within the scanner has only one de-
gree of freedom that affects only ¢. It can be shown easily
thatlicm=| is invariant with respect to that rotation. The
negative side is that pairs of symmetric postures have very
close feature values. Such pairs have been associated to the
same class and the ambiguity can be removed after the clas-
sification, by using simple geometric procedures.

A dyadic discretization is adopted for a and b, by choos-
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ing & = (Scale)27?, p = 0,1,2,3 and b = ga/2, ¢ =
0,1,...,2P%1, where Scale is the radius of the sphere confin-
ing the data points. The scaling parameter & takes the values
Scale, Scale/2, Scale/4, Scale/8. Values smaller than Scale/8
do not allow to extract significant information. The shifting
parameter b is varied proportionally to the scale parameter
within the range [0, Scale]. The number of (p, ¢} pairs is then
equal to 34, which combined with 4 pairs (m, n) resuit in
136 WTC features Ci»

4 Feature Selection and Classification

Since not all the features will contribute effectively in the
classification. There is a need to select the most useful fea-
tures that have a high discriminative power. The discrimina-
tive power is characterized by the interclass distance defined
as metric for measuring the separation between two classes.
A selection criterion based on that metric is therefore uti-
lized in the search for the optimal set of features. This task
was subject of intensive work in the literature [17]. There
are mainly tow categories of techniques the first operates on
feature vectors, the second treats each feature individually.
We adopted a technique belonging to the second one, it is
sub-optimal but quite efficient. The selection algorithm is
as follows: Givena set of features {1, 2, .., 24} and given
a selection criterion J: 1) Compute the selection criterion
value J(k) for each feature zj , 2) rank the features in de-
scending order with respect to J, 3) select the top ranked
features. The choice of the selection criterion is quite tight
to the classification method in the sense that the interclass
distance should be defined in the same framework of the
classification scheme, so before setting the selection crite-
rion let first examine the classification.

The classification problem is stated as follows: Given a
set of posture classes C,..Cy and given a query posture
Q . find to which class the posture @ belongs ? The query
posture is represented by an observation feature vector of
dimension d, X = [z1,%a, .., z4]. For each class ¢, consider
the discriminative functions d;(x). The vector X is associ-
ated to the class C; if di{X) > ¢;(X) forallj # i. The opti-
mal discriminative function in the sense of Bayes, assuming
P(X|C;) is a normal density & (u;, Z:) and the the different
classes have equal priori probability, can be brought to:
(X)) = —L(X = p)TE7H(X — ) — $in|%;] . The statistics
(1, 4) of class C; are obtained from training process based
using the standard EM technique [18]

Back to the selection criterion, the interclass distance
between two classes ¢; and ¢; , having the conditional
probability density functions P(zi,C;) = AN(uf,oF) and
Pz, C5) = N(p;-‘,a'}‘) with respect to the feature z, can

be evaluated by the following probabilistic distance: s¥; =
E ook . .

%(E-}; + =2+ 5 (uf —y})z(r'i?wtﬁ,?) . This expression
i ¥ 1 F)

indicates that the larger the ratio of the means difference and



Figure 2. The posture models

the variances sum, the wider is the distance separating the
two classes. The criterion that evaluates the discriminative
power of the feature x4 15 then the sum of the pairwise in-
terclass distance: J(k) = 30 3¢ sk . The larger the
value of J, the better the feature z; can discriminate be-
tween the classes.

This criterion is then used to rank the set of the 136 fea-
tures C5%;". the first three feature were C7'1, 1) and 9.
Because of the limited space we could not discuss in details
the interpretation of the features rank. The main aspect is
that the best WTC operate on the periphery of posture vol-
ume, area which is the most sensitive to posture changes
caused by the arms’ gesture in our models.

5. Experiments

The performance of the WTC features in terms of power
discrimination and classification rate were assessed within
a comparative study including the geometric moments de-
veloped by Lo et al [10] and the 3D Zernike moments [11].
The postures are generated from 3D Human body scan ob-
tained from Cyberware cite in the Web [19]. The HB scan
was then fitted to an articulated HB model. The orientations
of the human body segments,set via the joint angles, define
the parameters of the posture. By varying these parameters
a variety of postures having a reasonable human shape can
be obtained. Figure 2 shows the different posture models
labeled from 0 to 18.

The statistic characteristics of each posture models are
determined as follows, for each posture, 30 training data
sets are generated, perturbing at each generation the posture
parameters with a Gaussian noise and randomly rotating the
full data in a direction that affects the ¢ coordinate. The
mean and the variance of the model vectors are computed
upon the 30 feature vectors associated to the training sets.

The discriminative power for each of the geometric mo-
ments, Zemike moments and the WTC is assessed by ex-
amining how well the best features of each category can
discriminate between close postures. The best features for
the geometric moments and Zernike moments were selected
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using the same scheme than for the WTC. From the pos-
ture models we selected pairs of postures which are close,
namely (0,7), (2,11} and {9,15) (Figure 2). Then for the 30
training samples of each posture in the pair, we plot the val-
ues of their corresponding best features. The distributions
related to each posture could then be visually compared.

Figure 3.a shows that the first three WTC features,
namely, C{'} , C; and €| are clearly well separated for
the three pairs. The separation of the two best Zernike mo-
ments Z; . and z}, plotted in a same figure for each pair
(Figure 3.b) is less clear although their distributions can be
distinguished. A more mixed close distributions are noticed
for the two other best Zernike moments. The distributions
of the best geometric moment I3, in Figure 3.c, look very
close, particularly for the two last pairs. The distributions of
the two other best geometric moments have similar behav-
ior. These results illustrate that the WTC features are more
capable to distinguish between close postures than Zernike
moments whereas the geometric moments are far less com-
petitive. It is worth to mention that the three best WTC fea-
tures were not selected specifically to discriminate between
these particular close postures, since the selection process
involved all the postures, yet these features still do separate
them quite reasonably.

In the second part of the experiments, the performances
of the WTC features, Zernike moments and geometrical
moments are assessed by evaluating the rate of successful
classifications. A set of query postures is matched with
the posture models. Query postures were obtained with the
same way than the posture models, that is a 30 randomly
perturbed and rotated version for each artificially generated
posture. The first experiment involved the three categories
of features. The aim is to have a rough comparison between
them. This test was carried out with the best four features
of each category. The results are illustrated in Figure 3.(d).
where the WTC has the best rating followed by Zenike mo-
ments then the geometric moments.

The other assessed aspect concerns how the classifica-
tion rate evolves in function of the number of features. This
gives an idea about the optimality of the selected set of fea-
tures. In this experiment, only the WTC and the Zernike
moments were assessed, as we decided not to carry with
geometric moments based on the results of the previous ex-
periment. This experiment used a query set of 30 x 19 sam-
ples. The experiment consist of many trials, in each one,
the number of features involved in the classification is in-
creased by one, starting by 5 features and ending by 35.
The classification rate associated to the WTC and Zernike
moments are mapped in Figure 3.(e). The Figure shows that
the WTC have the best classification rate for all the numbers
of features, with a maximum rate of 98% reached with 23
features. For Zemike moments the maximum rate of 94% is
obtained with 28 features. Also we notice that with 11 WTC



can guarantee a classification rate of 95% whereas a lower
rate of 93% needs 16 Zernike moments. Although there
is an overall improvement of the classification rate as the
number of features get increased, this improvement is not
monotonous as some fluctuations appears from the 10th fea-
ture. The cause comes back to the feature selection process,
where the used technique guarantee only a sub-optimal set
of features. Also, after a certain number of features (25), the
classification rate looks stagnating. Indicating that adding
other features do not improve the classification.

6 Conclusion

The WTC features demonstrated very reasonable dis-
criminative power compared to Zernike moments and geo-
metric moments. This was reflected on classification rate
of each category of features, where The WTC were top
ranked whatever number of features ts used. For some set of
WTC features, the classification rate reached 98% whereas
a larger number of Zernike moments is needed for the max-
imum rate of 94%. The database of the training samples
can be enriched by adding a vartety of human body shapes
coming from different scan sources. Naturally the number
of model postures we considered is far from being exhaus-
tive. Many different postures can be added. This raises the
question of what is the maximum number of different pos-
tures that could be successfully recognized. We believe that
this is linked to what extent the recognition process could
distinguish between two close postures and how to quantify
the closeness of two postures. These issues will be exam-
ined in a future work.
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