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The flux-magnetomotive force (flux-MMF) diagram, or “energy conversion loop,” is a powerful tool for computing the parameters of
saturated interior permanent-magnet brushless motors, especially when the assumptions underlying classical dq theory are not valid, as
is often the case in modern practice. Efficient finite-element computation of the flux-MMF diagram is possible when the motor current is
known a priori, but in high-speed operation the current regulator can lose control of the current waveform and the computation becomes
“voltage-driven” rather than “current-driven.” This paper describes an efficient method for estimating the motor performance—av-
erage torque, inductances—by solving the voltage-driven problem. It presents experimental validation for a two-pole brushless interior
permanent-magnet motor. The paper also discusses the general conditions under which this method is appropriate, and compares the
method with alternative approaches.

Index Terms—Finite-element method, permanent-magnet brushless motors, simulation, torque calculation.

I. NOMENCLATURE

Instantaneous current, voltage, and flux-linkage.

The operator ; or number of pole-pairs.

Rotor angular position, rad.

Inductance, resistance, and reactance.

Torque, N m.

[ ] An array; or value at previous time-step.

Integration time-step, s.

Speed in electrical rad/s.

(Subscripts) direct and quadrature axes.

II. INTRODUCTION

BRUSHLESS permanent-magnet motors are established in
a wide range of applications including hybrid vehicles,

servo motors, high-efficiency pumping applications and others,
while new applications are emerging as a result of their high
efficiency, low noise, and controllability, [1], [5]–[7], [10],
[12], [14]–[17]. It is well known that when the magnets are
embedded inside the rotor iron, as in the “interior perma-
nent-magnet motor” (IPM), calculations based on classical
theory can be unreliable, mainly because of the variation of
parameters due to saturation.

For example in such machines can vary by at least 700%
between no-load and full-load, while cross saturation influences
the -axis parameters in a complex manner [1]–[7], [9]. The
difficulties are increased by the use of fractional-slot windings
with small numbers of slots/pole (even less than 1), non-circular
laminations, and other departures from the ideal machine, so
that neither the EMF waveform nor the variation of inductance
with rotor position is sinusoidal.
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Most previous analyses rely on the classical model [1]–[7],
[9], and although they allow for cross-saturation effects they re-
strict themselves to steady-state operation and ignore the effect
of rotor position on the -axis parameters.

As long as the current waveform is known a priori, these
problems can be overcome in an efficient computation in which
the finite-element method is used to determine one cycle of the
flux-linkage waveform, which is then plotted against the cur-
rent waveform to establish a “loop” whose area gives the av-
erage electromagnetic torque. This loop diagram is known as
the “flux-MMF diagram” or “i-psi loop” or “energy conversion
loop” [9]. Bearing in mind that finite-element formulations are
fundamentally always “current-driven,” the computation is ef-
ficient because of the foreknowledge of the current waveform,
so that a series of current values can be used as inputs to the fi-
nite-element process. This method does not necessarily rely on

theory.
At higher speeds it is normal for the current-regulator to lose

control of the current waveform, and ultimately at the highest
speeds the drive may operate in six-step mode. In this case, the
applied voltage waveform is known but the current waveform is
not. Similarly, if the machine is generating into a rectifier, the
applied voltage at the machine terminals is known or calculable,
whereas the current waveform is unknown.

The accuracy of the finite-element method is very desirable
in design work, but the problem is how to get quick results,
especially in solving the “voltage-driven” problem. Certain fi-
nite-element programs can incorporate differential electric-cir-
cuit equations in their solvers, but the solution time is a serious
problem because it must run out over many cycles until a steady
state is achieved. Some finite-element programs can be cou-
pled to general-purpose system simulation software. When such
general-purpose tools are used, the setup time may be an addi-
tional issue. The objective here is to develop a special-purpose
method which is specifically designed for rapid computation,
and to throw some light on the actual need for voltage-driven
finite-element solutions.
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III. MATHEMATICAL MODEL

A. The Problem to be Solved

The basic problem is to solve the voltage equations of the
machine and its drive. For a three-phase machine, the voltage
equations of the individual phases are

(1)

It is also necessary to know the magnetization curves, i.e., the
relationship between the flux-linkages and the currents :

(2)

When a simulation program is used to solve (1), the voltages
are known and the currents are unknown. A “time-stepping” so-
lution proceeds by integrating (1) step-by-step, and from the
new flux-linkages at the end of each time-step the currents must
be obtained by inverting (2), ready for the next time-step. Some-
times (2) is expressed in the form

(3)

so that the necessary inversion is a simple matrix operation. Un-
fortunately, in all but the simplest cases, the self and mutual in-
ductances in the matrix are complicated functions of rotor
position . When magnetic saturation occurs, they are also func-
tions of current, and then their definition and computation can
become ambiguous and obscure. Sometimes (3) is substituted
in (1) ab initio, making currents the state variables instead
of flux-linkages . Since current varies much more rapidly
than flux-linkage, it becomes necessary to use a much smaller
time-step and the solution becomes much slower.

The finite-element method is fundamentally a method of
evaluating (2). Known phase currents are expressed as
current-density in slot regions, and the unknown flux-linkages

are computed from line integrals of vector poten-
tial along the winding conductors. If the current waveform
is given, the finite-element method can be used to compute
the flux-linkage waveforms which can be differentiated with
respect to time and substituted in (1) to predict the
voltage that would be necessary to achieve the assumed current
waveforms. This somewhat “back-to-front” process only works
with known current waveforms, but it is quick. Rather than
providing a full “voltage-driven” solution, it gives a quick
“current-driven” solution together with an indication of the
required drive voltage.

B. Limitations of Classical Theory

The classical theory of the synchronous machine is based on
the transformation, usually in the form attributed to Park [11].
In the ideal case, it eliminates the rotor position from the
matrix, producing an immense simplification. For 3-wire con-
nections it reduces the number of currents from 3 to 2, and like-
wise for the voltages and flux-linkages.

In its classical form this theory rests on two assumptions:
the windings are sinusoidally distributed around the stator pe-
riphery, giving rise to a sinusoidal induced voltage and sinu-
soidal variation of self- and mutual inductance with rotor posi-
tion; and the magnetic circuit is linear.

If phasors are to be used to describe steady-state operation, it
must also be assumed that all currents and voltages have si-
nusoidal time-waveforms. In modern practice all three of these
assumptions are often violated to some degree, in some cases
to such an extent that the classical model gives seriously mis-
leading results.

In spite of these limitations it is still desirable to work in
axes, which are synchronous and fixed to the rotor. This is

the natural reference frame for the synchronous machine. Even
under nonideal conditions its simplifying properties are valu-
able. The transformation is described in [11]:

(4)

The same transformation is used for currents and voltages.
When it is substituted in (1), the voltage equations

(5)

are obtained. The zero-sequence component is omitted if the
machine has no neutral connection.

The transformation is valid even when the idealizations
– are not satisfied. In that case it is merely a mathemat-

ical mapping; (5) does not inherently require magnetic linearity
or sinusoidal winding distributions.

Digital simulation of the machine performance requires the
step-by-step integration of (5). For example, by Euler’s method
the -axis equation becomes

(6)

and similarly for the -axis, where means the value of
at the previous time-step. At each new time-step, the currents
and must be updated from the new flux-linkages, using the
magnetization curves.

C. Mathematical Form of the Magnetization Curves

In the classical synchronous machine with sine-distributed
windings and no saturation, these relationships are simple
straight lines:

and (7)

where and are the synchronous inductances and is
a constant flux-linkage produced by the magnet or the field-
winding, depending on the type of machine. It is trivial to in-
vert (7) at each time-step. In the classical case, the and axes
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are uncoupled and the magnetization curves (7) are independent
of rotor position .

In the general case the windings may not be sine-distributed
and the magnetic circuit may be saturable. The magnetization
curves then have the general form

(8)

The magnetization curves in this form can be obtained by trans-
formation from finite-element evaluations of (2). In general
is a function not only of but also of (cross coupling) and
even of , and likewise is a function of and as well as

. The functional relationships (8) require a vast number of fi-
nite-element calculations to define them [2], as well as an ap-
propriate interpolating function. They are much more complex
than (7), which have the form

(9)

in which there is no cross coupling and no variation with rotor
position, and which are easily inverted even when they are non-
linear. One option is to limit the extent of the “saturation model”
to this form, implicitly ignoring cross saturation and any varia-
tion with rotor position [1], [3], [4]. Thus, the influence of of the
direct axis current, on the q-axis flux-linkage is negligible
most of the interior PM motors [6].

In (8), the functional influence of is due to winding har-
monics and any variation of magnetic permeance as the rotor ro-
tates. The obvious source of such permeance variation is on the
stator. It includes any grain-orientation in the steel; the presence
of notches or holes in the lamination, or chamfers and cut-outs
at its outer surface; and the effects of slotting.

Even without these effects, and even with sine-distributed
windings, if the magnetic circuit is saturable there remains the
possibility of a functional influence of , induced by the varia-
tion of current as the rotor rotates. In well-designed machines
the functional influence of in (8) should be weak, otherwise
it would be difficult to produce smooth torque. But it requires
good calculations to achieve this. With no variation, the mag-
netization curves have the form

(10)

This is the form presented in [2], but only in the form of graph-
ical data with no attempt to provide the interpolating function
that is necessary in connection with the time-stepped solution
of the voltage equations.

D. Methods for Solving the Problem

In the process of integrating (6), we have seen that “new”
values of and are generated at each time-step, and that the
currents and must be updated. The integration is computa-
tionally fast, and therefore our main concern is with the methods
for updating the currents, which can be classified as follows.

A) If there is no magnetic saturation and the windings are
sinusoidally distributed, (7) can be used. This is by far the
fastest method, but obviously it requires reliable values of

and .

B) Method A) can be modified by precalculating a current-
driven - loop and adjusting the values of and

to take account of saturation and variation in an
average sense over one electrical cycle.

C) As the time-stepping solution proceeds, the values
of and can be updated by means of a
single-point finite-element calculation at each time-step,
or after an arbitrary number of time-steps, and used in (7)
to determine the currents at the next time-step.

D) An entire set of magnetization curves can be precalcu-
lated in the form of (8); or in the simplified form of (9)
(with no cross saturation or variation) or (10) (with cross
saturation but no variation). Whatever the form of the
magnetization curves, the supposition is that they must be
precalculated by finite-elements and expressed in a suit-
able form for time-stepping simulation. The necessary in-
terpolation of the magnetization curves by a numerical
curve-fitting function is not a trivial matter and is likely
to introduce additional errors. Moreover, this process im-
plies a separation between the computation of the magne-
tization curves and their use in the time-stepping simula-
tion, which is very inconvenient from the user’s point of
view.

E) As the time-stepping simulation proceeds, at each time-
step a series of single-point finite-element solutions can
be executed under the control of a Newton–Raphson type
algorithm which adjusts the currents and to match
the flux-linkages computed by means of the circuit sim-
ulation. Assuming that four finite-element solutions are
required at each iteration (to provide the necessary ele-
ments of the Jacobian), and assuming five iterations per
point, this method requires 20 times more finite-element
solutions than Method C).

For normal design work these times suggest that methods A)
and B) are much to be preferred, especially if their accuracy
can be substantiated by intermittent use of Method C). Taken
together, these methods are perfectly sufficient for the current-
driven problem. The results presented later suggest that they
may also be sufficient for the voltage-driven problem, in which
case methods D) and E) appear to be quite uneconomic.

The average electromagnetic torque is obtained from the sum
of the loop areas enclosed within the - locus for each phase,
and examples are given in Figs. 4–6, [9]. Method A) is the only
one that permits the separation of permanent-magnet alignment
torque and reluctance torque. All the others have the possibility
of computing torque also by Maxwell stress.

IV. EXPERIMENTAL AND COMPUTATION DATA

Fig. 1 shows the cross section with flux-lines plot of a two-
pole brushless IPM motor which is controlled by a PWM in-
verter. Each magnet pole comprises three separate NdFeB mag-
nets. The three-phase winding has two pole-groups per phase,
each with four coils having turns and coil-pitches of 50/11; 46/9;
40/7 and 30/5, respectively. The rotor diameter is 62 mm and the
stack length is 48.6 mm. There is no skew.

Complications are introduced by the complex outer shape of
the stator lamination. Thus, although the windings are reason-
ably sinusoidally distributed, the permeance harmonics result in
considerable ripple in the back EMF (see Fig. 2). There is also
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Fig. 1. Cross section of the tested motor with flux-lines plot.

Fig. 2. Open-circuit back EMF.

an asymmetry in the EMF waveform caused by the squared-off
shape of the stator lamination and the nonuniform stator yoke
section. This affects the three phases differently according to
their positions. The importance of the open-circuit waveforms
is to show the degree to which the motor might appear to be
amenable to analysis by theory. In spite of the ripple in the
EMF, the sinusoidal shape of the flux-linkage in Fig. 3 suggests
that good results should be obtained for the average torque. Note
that the flux densities in certain stator yoke regions and rotor
bridges are approaching 1.8 T even in the open-circuit condi-
tion, so the machine is partly saturated.

Fig. 4 shows the - loop diagram for sinewave current con-
trol, comparing the measured loop with the finite-element cal-
culation having a peak phase current of 1.23 A at 440 rpm with
no phase advance. The loop torque is 1.10 N m and this agrees
almost exactly with the measured value. Both the current and the
flux-linkage waveforms are closely sinusoidal in this condition.

Fig. 5 shows a sinusoidal voltage-PWM control in which the
switching duty-cycle is modulated to give a sinusoidal terminal
voltage (apart from the switching harmonics). Accordingly the
flux-linkage is nearly sinusoidal but the current is not perfectly

Fig. 3. Flux-linkage per phase.

Fig. 4. i- loop for sinewave current control.

Fig. 5. i- loop for voltage PWM current control.

sinusoidal. The calculated loop in Fig. 5 is obtained by a current-
driven finite-element computation using the measured current
waveform, giving a loop torque of 0.79 N m compared with the
measured value of 0.76 N m.

Fig. 6 shows the - loop for six-step operation at 528 rpm
with a dc link voltage of 70 V. The calculated loop is obtained by
a current-driven finite-element computation using the measured
current waveform, giving a loop torque of 1.14 N m compared
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Fig. 6. i- loop for six-step current control.

Fig. 7. Phase current for six-step voltage.

Fig. 8. Phase flux-linkage for six-step voltage.

with the measured value of 1.17 N m. The current for this six-
step condition is shown in Fig. 7, and the flux-linkage in Fig. 8.

The flux-linkage waveform consists essentially of straight-
line segments while the phase voltage waveform can be recon-
structed by differentiating this waveform and adding the resis-
tive volt-drop, as shown in Fig. 9 .

Fig. 9. Phase voltage reconstructed from Figs. 7 and 8.

Fig. 10. Computed current for six-step operation.

To illustrate the effectiveness of the computation methods A),
B), and C) of Section II, the six-step drive is taken as the clearest
example of a case where the applied voltage waveform is known
a priori, but the current waveform is not.

Considering Method C) first, Fig. 10 is computed from
scratch using motor dimensions and materials, with the
time-stepping solution of the differential circuit equations in
the PC-BDC program and the values of and
updated by a finite-element calculation at each time-step using
[13].

Also shown (dotted) in Fig. 10 is the current computed by
Method B) with fixed values of and after adjusting
to match a current-driven finite-element loop calculation at
2.5 A peak. The adjustments required a 15% reduction in -axis
magnet flux , a 20% reduction in , and a 22% reduction
in to allow for the overall saturation at this condition. The
loop torque compares closely with that of Method D).

Fig. 10 also shows the current computed by Method A)
with fixed unsaturated inductances and and magnet
flux-linkage (7). The current is underestimated and so is
the torque, even though the flux-linkage waveform is the same.
The measured variation of the values of and with current
is illustrated in Fig. 11.

Note the reluctance ratio of between axis inductances.
Also, the same saturation level occurs in both axes, where the
corresponding inductance varies with 20% as compared to the
unsaturated value. The measured inductance values are obtained
using a Jones bridge test stand [8].



1872 IEEE TRANSACTIONS ON MAGNETICS, VOL. 42, NO. 7, JULY 2006

Fig. 11. Measured dq axis inductances.

V. CONCLUSION

The flux-MMF diagram may be used to compute the average
torque and inductances in an interior permanent-magnet motor.
Accurate estimations of the parameters for saturated interior PM
motor are obtained by incorporating the finite-element solutions
into a “voltage-driven” equations system.

It is shown that computation burden economies can be made
in the application of the finite-element method to the accurate
calculation of the average electromagnetic torque. The paper de-
velops an improved understanding of the extent to which clas-
sical axis analysis and phasors can be used legitimately in
nonsinusoidal current operating conditions such as six-stepping.
It also provides a means of testing the rigour of various common
assumptions about the motor—for example, whether the syn-
chronous inductances vary with rotor position, or whether the
phasor diagram can be used when the current waveform is not
sinusoidal.
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