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Abstract

A new approach for estimating nonlinear models of the electrically stimulated
quadriceps muscle group under non-isometric conditions is investigated. The model
can be used for designing controlled neuro-prostheses. In order to identify the muscle
dynamics (stimulation pulsewidth – active knee moment relation) from discrete-time
angle measurements only, a hybrid model structure is postulated for the shank-
quadriceps dynamics. The model consists of a relatively well known time-invariant
passive component and an uncertain time-variant active component. Rigid body
dynamics, described by the Equation of Motion (EoM), and passive joint properties
form the time-invariant part. The actuator, i.e. the electrically stimulated muscle
group, represents the uncertain time-varying section. A recursive algorithm is out-
lined for identifying online the stimulated quadriceps muscle group. The algorithm
requires EoM and passive joint characteristics to be known a priori. The muscle
dynamics represent the product of a continuous-time nonlinear activation dynamics
and a nonlinear static contraction function described by a Normalised Radial Basis
Function (NRBF) network which has knee-joint angle and angular velocity as input
arguments. An Extended Kalman Filter (EKF) approach is chosen to estimate mus-
cle dynamics parameters and to obtain full state estimates of the shank-quadriceps
dynamics simultaneously. The latter is important for implementing state feedback
controllers. A nonlinear state feedback controller using the backstepping method is
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explicitly designed whereas the model was identified a priori using the developed
identification procedure.

Key words: Electrical stimulation, Extended Kalman filter, Physiological model,
Neural network, Nonlinear control

1 Introduction

The development of controlled neuro-prostheses for the restoration of basic
motor functions to paraplegics represents a major research area in rehabilita-
tion engineering. These lower limb prostheses are based on a technique called
Functional Electrical Stimulation (FES), in which stimulation of paralysed
muscles can generate muscle contractions (Popović and Sinkjær, 2000). FES,
together with appropriate sensor and control technology, can provide useful,
controlled functional movement. To design controllers for FES systems, it can
be useful to have an accurate model which describes the relation between the
stimulation parameters and the resulting force, moment or movement.

In this paper we are particularly interested in a physiologically-based non-
linear modelling approach for the electrically stimulated quadriceps muscle
group under non-isometric conditions (changing muscle length). The experi-
mental set-up will be given in Section 2. As an alternative, black-box modelling
approaches can be considered (Gollee and Hunt, 1997; Previdi, 2002; Schauer
et al., 2001; Schauer and Hunt, 2000). However, in nonlinear black-box model
design, depending on the model family used, structure selection could be a
difficult task. In particular, to obtain an effective structure identification long
measurements time series could be needed.

When modelling this dynamics on a physiological basis, the combination of a
modified Hill-type muscle model and a passive model part is often assumed.
The latter consists of the Equation of Motion (EoM), passive elastic and pas-
sive viscous properties; first principles, simple pendulum tests and static force
measurements without stimulation are used to obtain this model part.

Detailed muscle models describe submuscle groups of the quadriceps mus-
cle group separately (e.g. (Riener and Fuhr, 1998)). Assuming a standard
Hill-type muscle model (Hill, 1938, 1970), the generated muscle force of the
individual muscle groups is the product of muscle activation (described by a
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nonlinear recruitment curve and a linear dynamics with time delay), a nonlin-
ear force – muscle length relation and a nonlinear force – muscle contraction
velocity relation. To calculate the resulting knee moment, nonlinear moment
arms (parameterised by the joint angle) for the muscles with respect to the
knee-joint have to be known. Passive muscle properties are usually assigned
to the joint. The identification of such muscle models is not possible or too
complicated in vivo, so that parameters are often taken from literature that
leads to a bad fit of the models to individual subjects.

Alternatively, the quadriceps can be treated as a single muscle, and joint
moment generation can be directly described in the joint angle – angular
velocity space instead of the muscle length – muscle contraction velocity space.
To keep the identification task simple, often linear moment – joint angle and
moment – angular velocity relations are postulated, which are only valid in a
limited subrange of the entire joint angle – velocity range.

Identification of the quadriceps dynamics (stimulation – active knee moment
relation) from shank movements was investigated in Chizeck et al. (1999)
(online estimation) and in Franken et al. (1995); Ferrarin and Pedotti (2000)
(off-line estimation). All these approaches require beside angle information
either direct measurements of velocity and acceleration or their numerical
computation from frequently sampled knee-joint angle measurements.

In Section 3, we present a simple approach based on an Extended Kalman
Filter to estimate a continuous-time nonlinear muscle model and its internal
states from discrete-time knee-joint angle measurements only, sampled with
stimulation frequency. Further, we look for a general nonlinear function that
describes the active knee moment as a function of joint angle and angular
velocity. The identification method will be demonstrated with simulations and
analysis of real data.

Further we show in Section 4 the usefulness of the proposed identification
procedure to derive nonlinear models for controller design. As the EKF delivers
state estimates directly, the application of state feedback for controlling the
knee-joint position is appealing.

The knee-joint tracking is simple to perform in experiments, and many re-
searchers have addressed this problem. It is also a popular benchmark, because
it can give us answers about the limitations and possibilities of closed-loop
control applied to physiological systems.

However, such a knee-joint controller may also be used in real situations:
Before carrying out functional tasks like standing-up or cycling using FES,
paraplegics usually undergo an exercise regime to strengthen and rebuild their
paralysed muscles. This is often performed under non-isometric conditions
while generating cyclic movements such as lifting the shank. Since optimal
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stimulation patterns are difficult to determine and dependent on subject and
day, fixed patterns such as ramps are applied in clinical use and implemented
open-loop in available stimulation hardware. Such patterns have the drawback
that changing muscle conditions due to fatigue and disturbances cannot be
taken into account.

By sensing relevant information on the musculoskeletal state the stimulation
pattern can be adapted online. The desired movement can have an arbi-
trary shape over time. In a training session the angle profile can be easily
re-programmed. We therefore do not need to rely on open-loop adjustment of
the stimulation pattern and this helps to avoid dangerous situations such as
hyper-extension of the knee.

In recent years several articles about the control of cyclic movements have been
published (e.g. PD/PID (Chang et al., 1997; Ferrarin et al., 2001; Riess and
Abbas, 2000), linear polynomial controller (Schauer and Hunt, 2000), neuro-
control (Chang et al., 1997; Riess and Abbas, 2000), adaptive control (Ferrarin
et al., 2001; Riess and Abbas, 2000), nonlinear feedforward control with lin-
ear feedback stabilisation using PD/PID control (Chang et al., 1997; Ferrarin
et al., 2001; Riess and Abbas, 2000), directly data-driven controller design
(Previdi et al., 2004), sliding mode control (Jezernik et al., 2004; Schauer
et al., 2002), gain scheduling controller (Previdi and Carpanzano, 2003)). The
existing linear approaches using PD/PID control have been shown to be un-
suitable. These controllers were either empirically tuned or determined by
standard tuning rules. Better results can be obtained by using higher order
linear controllers based on identified pulse transfer functions of the system
(Schauer and Hunt, 2000). Neuro-control and nonlinear control approaches can
in contrast to linear control provide better performance but often require more
sensory information. This problem will be mitigated by using state estimates
provided by an EKF as proposed in this article. Adaptive control represents
an interesting approach for time varying systems like the human body. The
essential stability proof for the closed-loop is however highly problematical for
nonlinear adaptive systems. These might also be a problem when using EKFs
as convergence of the parameter and state estimates is theoretically difficult
to prove.

In application of feedback control to physiological systems there will always
be a compromise between the model complexity and the closed-loop perfor-
mance. In our approach we intend to keep the model complexity as well as
the identification procedure at a minimum, while achieving robust tracking
performance. Our intention is to design a nonlinear controller based on the
back-stepping method (Sepulchre et al., 1997) employing a simplified model of
the knee-joint dynamics (Section 4.1). This control design approach possesses
more inherent robustness with respect to modelling errors compared to other
nonlinear control design approaches. Simulation results based on the control
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of a complex physiological model of the knee-joint will be given.

2 Experimental Set-Up

The experimental set-up for identification is depicted in Fig. 1. The subject is
seated on a bed with the unloaded shank free to swing. Pulsewidth modulated
electrical current pulses are sent to the knee extensor muscles via surface elec-
trodes and cause contractions and knee-joint motion. The knee angle y (system
output) is measured and sampled every 50 ms by a 3D-motion analysis system
(zebris Medizintechnik GmbH, 1999) working with ultrasound. It delivers the
angle measurements in real-time (time delay of 70 ms) via the parallel port
to a laptop. A multi-channel stimulator (Phillips et al., 1993) is connected to
the laptop via the serial port and delivers the current pulses with pulsewidth
pw up to 500 µs. During the experiments the pulsewidth serves as a variable
input signal whereas the current amplitude I = 80 mA and the stimulation
frequency f = 20 Hz are fixed.

The input signal during identification is chosen as a Multi-level Pseudo-Random
Sequence (M-level PRS) (Godfrey, 1993) in order to excite the nonlinear sys-
tem behaviour. An M-level PRS is a periodic, deterministic signal which has
an autocorrelation function similar to white noise.

A 57 year-old T10 complete paraplegic male subject, 2 years post-injury, train-
ing his quadriceps muscles for a FES-cycling project, participated in this study.
Informed consent was obtained from the subject.

3 Identification of the Electrically Stimulated Quadriceps Muscle

3.1 Model Structure

The shank-quadriceps dynamics are modelled as the interconnection of a
passive part (Sec. 3.1.1), including the equation of motion and passive elas-
tic/viscous joint properties, and an active part (Sec. 3.1.2), consisting of mus-
cle activation and contraction dynamics. Passive muscle properties have been
assigned to the joint in order to keep the number of muscle parameters small.
The passive system part is nearly time-invariant, whereas the active part (mus-
cle actuator) possesses a large day-to-day variation and is affected by muscle
fatigue due to prolonged stimulation.
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3.1.1 Passive Viscous-Elastic Characteristics and Equation of Motion.

The total knee-joint moment is given by

MK = Me + Mg + Mv + Ma (1)

with Me: passive elastic moment, Mg: gravitational moment, Mv: passive vis-
cous moment and Ma: active moment generated by quadriceps stimulation.
The gravitational component is determined by

Mg(x1) = −mgl sin(x1 − x∗

1) (2)

where m is the mass of the shank-foot complex and l is the distance between
knee and centre of mass. The knee-joint angle x1 as well as the angle x∗

1 are
defined in Fig. 1. The elastic moment Me(x1) is expressed as an exponen-
tial function as proposed and experimentally verified in Ferrarin and Pedotti
(2000). Passive viscous joint properties have been modelled as a nonlinear
damping function

Mv(x2) = B1 tanh(−B2x2) − B3x2, (3)

where B1, B2 and B3 are positive constants and x2 the angular velocity. Note
that Coulombic friction effects are captured by this damping function. The
Equation of Motion (EoM) is given by

ẋ2 =
1

JK

MK(x1, x2,Ma) (4)

where JK represents the moment of inertia of the shank-foot complex about
the knee-joint. The anthropometric parameters m, JK and l are estimated by
measuring the height and weight of the subject and using regression equations
(Stein et al., 1996). A passive pendulum trial is performed to obtain stiff-
ness and damping parameters. When no electrical stimulation is active, these
parameters can be calculated by using a nonlinear least-squares algorithm
applied to the model equations.

3.1.2 Nonlinear Muscle Model

The active muscle moment Ma is determined by the product of an activation
dynamics and a nonlinear static contraction function (cf. Fig. 2).

The activation dynamics consist of a static recruitment curve and a transfer
function connected in series. The recruitment curve gives a measurement for
the normalised amount of activated motor units depending on the pulsewidth
pw. This measurement is labelled as stimulation level. A piecewise linear func-
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tion describes the recruitment curve:

st =







0, pw < pwthr

pw − pwthr

pwsat − pwthr

, pwthr ≤ pw ≤ pwsat

1, pw > pwsat

(5)

where pwthr is the pulsewidth for which first motor units are recruited and
pwsat stands for the pulsewidth where all motor units are recruited. These
threshold and saturation levels can be determined as follows under non-isometric
conditions: the pulsewidth for which the shank starts to move is taken as pwthr,
and the pulsewidth for which the leg reaches full extension is approximately
chosen as pwsat.

The temporal behaviour of the muscle activation is mainly influenced by cal-
cium Ca2+ release dynamics, finite conduction velocities in the membrane
system and delays from the chemical reactions involved. To describe these ef-
fects a second order transfer function with an input time delay Td as proposed
by Riener and Fuhr (1998) is used:

ẋ3 = x4 (6)

ẋ4 = −2w0Dx4 − w2
0x3 + w2

0st(t − Td) (7)

where the output x3 is the normalised activation of the muscle, w0 and D = 1
are the undamped natural frequency and the damping factor of the calcium
dynamics respectively.

Nonlinear Contraction Function. The active knee moment produced by
the quadriceps is given by

Ma = Fm(xp)x3 (8)

where Fm [Nm] is the nonlinear contraction function which defines the maximal
possible active torque in the case of full muscle activation dependent on knee-
joint angle and velocity which have been arranged in a vector xp = [x1 x2]

′.

With the aim to have little constraints on the form of the nonlinear contraction
function, a Normalised Radial Basis Function (NRBF) network (Nelles, 2001)
is used to parameterise Fm:

Fm(xp) =
M∑

i=1

ψiϕ̃i(||xp − ci||Σi
) (9)

Here, the contraction function is described as the sum of M normalised radial
basis functions ϕ̃i, i = 1, . . . ,M which are weighted by the constants ψi, i =
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1, . . . ,M . The function ϕ̃i is given by

ϕ̃i(||xp − ci||Σi
) =

ϕi (||xp − ci||Σi
)

∑M
l=1 ϕl (||xp − cl||Σl

)
(10)

where ϕi is a non-normalised Radial Basis Function (RBF) chosen to be a
Gaussian function:

ϕi(||xp − ci||Σi
) = exp

(

−1/2||xp − ci||
2
Σi

)

. (11)

The argument ||xp−ci||Σi
represents the distance of the NRBF network input

vector xp from the centre vector ci and is calculated by

||xp − ci||Σi
=

√

(xp − ci)′Σi(xp − ci) (12)

with Σi being a norm matrix. For this application the Σi matrix is chosen to
be diagonal; so, it contains the inverse variances for each input dimension.

NRBF networks possess a good interpolation and extrapolation behaviour
(constant) (Nelles, 2001). Furthermore it can be guaranteed that the NRBF
output lies in the interval min(ψi) ≤ Fm ≤ max(ψi), i = 1, . . . ,M . This is a
result of the fact that the sum of all normalised basis functions ϕ̃i, i = 1, . . . ,M
is equal to 1.

3.1.3 State-Space Model Representation

The shank-quadriceps dynamics can be compactly written as state-space model
with the following state vector, input and output:

x = [x1 x2 x3 x4]
′ (13)

y = x1 (14)

u = pw(t − Td). (15)

Elements of the state vector x are joint angle and velocity as well as the states
of the calcium dynamics. The knee-joint angle is defined as output, and the
time delayed pulsewidth is taken as system input. The form of the state-space
model is then

ẋ = f(x, u) (16)

y = c′x (17)
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with the vector function f given by

f(x, u) =












x2

1

JK

[Me(x1) + Mg(x1) + Mv(x2) + Fm(xp)x3]

x4

− 2w0Dx4 − w2
0x3 + w2

0st(u)












(18)

The vector c is defined as c = [1 0 0 0]′.

3.2 Extended Kalman Filter

Online estimation of the state vector x and some muscle parameters is inves-
tigated. Muscle parameters, considered for online estimation, are the weights
of the NRBF network which are arranged in a vector ψ = [ψ1, · · · , ψM ]′, as
well as the frequency w0 of the activation dynamics.
All parameters to be tracked form a parameter vector θ:

θ = [w0 ψ′]′. (19)

A common approach in parameter estimation is to model all the parameters
by a differential equation. By setting

θ̇ = 0 (20)

we assume that model parameters are time-invariant or slowly varying in com-
parison to the process dynamics. Equation (20) is added to the plant state-
space model and a nonlinear observer is then applied to estimate the meta-
state z = [x′ θ′]′. The resulting dynamical system for the meta-state is given
by

ż =

[
ẋ

θ̇

]

=

[

f(x, u,θ)

0

]

︸ ︷︷ ︸

f
z

(z,u)

(21)

y =
[

c′ 0
]

︸ ︷︷ ︸

cz′

[

x

θ

]

. (22)

The estimation of the meta-state is carried out using an Extended Kalman
Filter (EKF) (Jazwinski, 1970) under following conditions and assumptions:

• Only discrete-time noisy angle measurements are available as observations
(sample time Ts = 50 ms).
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• The input signal is constant between two pulses: u(t) = uk = u(kTs), kTs ≤
t < (k + 1)Ts.

• Estimates ẑk = ẑ(kTs) of the meta-state are required at discrete-time in-
stants only.

To perform this estimation task, we assume that a discrete-time state-space
model of the shank-quadriceps dynamics is available, that describes the system
(21-22) exactly at the time instants kTs. The discrete-time model has the
following form:

zk = f z
s(zk−1, uk−1) + vk−1 (23)

yk = cz′zk + rk (24)

where f z
s is an appropriate transition function. Measurement noise rk and

process noise vk are uncorrelated sampled white noise signals with covariance
E(rnrk) = δn,kRk and covariance matrix E(vnv′

k) = δn,kV k respectively. Here,
E is the expectation operator and δ is the Kronecker symbol.

The EKF provides an efficient method for generating approximate maximum-
likelihood estimates of the meta-state of the discrete-time system (23-24). The
filter optimally combines noisy observations with predictions from the known
dynamical model and involves the following recursive procedure (Friedland,
1996):
1st step: Propagate the state

z̃k = f z
s(ẑk−1, uk−1) (25)

Here, z̃k is the a priori state estimate, and represents the state estimate
immediately before the kth observation of the knee-joint angle. This estimate
is based on the estimate ẑk−1 which is the state estimate after the (k − 1)th
observation of the previous time step. The state estimate immediately after
an observation is called a posteriori estimate.

As the transition matrix f z
s is not known explicitly, it will be defined implicitly

as the solution of the nonlinear differential equation (21). The estimate z̃k is
the result of numerical integration of (21) over the interval (k−1)Ts ≤ t ≤ kTs

(during which the control signal u(t) = uk−1 is constant) starting with the ini-
tial condition z((k − 1)Ts) = ẑk−1.

2nd step: Propagate the error covariance matrix

The a priori (before observation) estimation error covariance matrix P̃ k is
updated by

P̃ k = Φk−1P̂ k−1Φ
′

k−1 + V k (26)
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where the matrix Φk−1 is the Jacobian matrix of the transition function f z
s:

Φk−1 =
∂f z

s(zk−1, uk−1)

∂zk−1

∣
∣
∣
∣
∣
zk−1=ẑk−1

. (27)

As the transition function f z
s is not explicitly given, the matrix Φk−1 is cal-

culated by numerical integration of the linearised matrix equation

Φ̇ = A(t)Φ (28)

over the interval (k − 1)Ts ≤ t ≤ kTs starting with initial conditions Φ((k −
1)Ts) = I and with A(t) being the Jacobian matrix of the nonlinear function
f z(z, uk−1):

A(t) =
∂f z(z, uk−1)

∂z

∣
∣
∣
∣
∣
z(t)

(29)

The meaning of the subscript z(t) is that the partial derivatives are computed
along the trajectories in state-space defined by numerical integration of the
continuous-time process equation (21).

3rd step: Update the Kalman gain

The current Kalman gain is computed from the a priori error covariance ma-
trix P̃ k as follows:

Kk = P̃ kc
z

(

cz′P̃ kc
z + Rk

)
−1

. (30)

4th step: State estimation update

The a priori state estimate is corrected by

ẑk = z̃k + Kk (yk − cz′z̃k) (31)

using the computed Kalman gain and the current observation yk in order to
obtain the a posteriori state estimate ẑ(k).

5th step: Update the error covariance

Finally, the a posteriori error covariance is given by

P̂ k = (I − Kkc
z′)P̃ k. (32)

Note that the terms a priori and a posteriori for the estimation error covari-
ance matrix depend only on the observation times and not on the observation
data.

The initial approximate error covariance matrix P̂ (0) for the EKF is chosen
to be a diagonal matrix; the scalar diagonal elements of P̂ (0) have the follow-
ing values: 10 if related to plant state estimates, 1000 if related to parameter
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estimates of recruitment curve and calcium dynamics and 10000 if related to
NRBF network weights. Larger values indicate that there is a larger discrep-
ancy between initialisation and real values.

Low level state noise is assumed for the states which represent parameters.
This prevents the gain matrix of the EKF from becoming too small. As a
consequence, changes in the muscle parameters can be quickly detected also
when the Kalman filter is running for a long time. The noise related to the
states x2 and x4 is modelled with higher variance since large unpredictable
variations (disturbances) in the neural activation and the knee moment are
likely. The noise covariance Rk is set accordingly to the specifications of the
measurement system.

3.3 Identification Results

The extended Kalman filter was tested in simulations and with real data. To
describe the function Fm, nine RBFs (M = 9) were used whereas centres of
the Gaussian functions are chosen as the points of a regular grid; these points
cover the interesting angle-velocity region during the non-isometric muscle
contractions. Variances of all non-normalised RBFs are all equal. Significant
overlapping of the non-normalised RBFs was selected to guarantee a high
smoothness of the resulting nonlinear contraction function Fm. The elements
of the meta-state vector were initialised as follows:

x̂1(0) = y(0), x̂2(0) = 0, x̂3(0) = 0, and x̂4(0) = 0.

Initial estimates ψ̂i(0), i = 1, . . . ,M, for the NRBF network weights were
randomly chosen from the range [-0.1,0.1].

3.3.1 Simulations using a Plant Simulator

The proposed model structure and EKF have been tested in simulations first.
A complex model of the lower limbs served as a substitution for the real plant.
This model was developed by Riener and Fuhr (1998), and will be called plant

simulator in the following.

Two individual sub muscle groups of the quadriceps muscle group, namely
rectus femoris and vasti, have been modelled independently with their own
activation and contraction dynamics. A Hill-type muscle model is assumed in
each contraction dynamics. The product of muscle activation and maximal
isometric force is scaled by a nonlinear force – muscle length relation and
force – muscle contraction velocity relation. Muscle lengths and contraction
velocities are parameterised by the joint angle and angular velocity of the
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knee which the muscles span via moment arms. The moment arms (defined as
the derivatives of the muscle lengths with respect to joint angle) are derived
under the assumption, that the knee is not a simple hinge joint. Active joint
moments are given by the sum of moments produced by each muscle group,
i.e. muscle force multiplied by moment arm.

EoM as well as passive viscous and elastic joint properties are identical to the
description given in Sec. 3.1.1.

The EKF approach was evaluated in simulations with the plant simulator
serving as real plant; output measurement noise with a variance of 0.0002 rad2

was introduced. Fig. 3 shows the knee-joint angle (plant simulator output) as
well as the corresponding stimulation pulsewidth. The a priori angle estimate
of the EKF is also shown in this plot. However, because of the close fit it is
not possible to distinguish both signals visually. In Fig. 4, the active moment
inside the plant simulator is plotted together with the a priori estimate of the
EKF. Already after approximately 5 s one can recognise a significant reduction
in prediction error.

The corresponding parameter estimates of the muscle dynamics are depicted
in Fig. 5; the upper graph shows the activation dynamics frequency ŵ0 while
elements of the estimated vector ψ̂ are shown in the lower graph. The initial
estimate for the frequency was chosen as ŵ0(0) = 20 1/s (25 1/s for rectus
femoris and 33 1/s for vasti within the plant simulator). The EKF converges
steadily within approximately 30 s. The estimated nonlinear contraction func-
tion F̂m after 100 s identification is shown in Fig. 6.

The estimated model after 100 s identification was further used to simulate the
plant behaviour. For this test, the completely estimated model is only driven
by the input signal while online parameter identification and state estimation
are switched off. The result of this simulation test is given in Fig. 7.

3.3.2 Evaluation using Experimental Data

The EKF approach was further evaluated in experiments with one paraplegic
male subject. Fig. 8 shows an applied stimulation sequence and the corre-
sponding measured output signal (angle) as well as the a priori angle estimate
of the EKF. The corresponding parameter estimates of the muscle dynamics
are depicted in Fig. 9; the upper graph shows the parameter ŵ0 of the acti-
vation dynamics while elements of the estimated vector ψ̂ are shown in the
lower graph.

The nonlinear recruitment curve was experimentally determined as described
in Sec. 3.1.2. The initial estimate for the frequency w0 was taken from liter-
ature. The time delay Td was estimated by correlation analysis of recorded
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input-output data of the system.

The estimated model after 80 s identification was further used to simulate
the plant behaviour for the time range 80-105 s. For this test, the model is
only driven by the input signal while online muscle identification and state
estimation are switched off. The result of this simulation test is given in Fig.
10.

The EKF converges steadily. The one step ahead angle prediction of the EKF
(a priori estimate) is fitting very well to the measured angle. However, the
simulation test shows some discrepancies between model output and measured
angle. This may be the effect of choosing a too simple model structure. Note
that no enhanced optimisation of the NRBF network structure (no. of NRBF
etc.) was carried out. Other reasons for the slight discrepancies may be spinal
reflexes (Nickolls et al., 2004) which are not described by our model. Also,
the estimation of the passive model part by means of simple pendulum tests
may not have given the best estimates for elastic and viscous passive moment
characteristics.

4 Nonlinear Controller Design

The system identification approach outlined before is subsequently used to
identify a simplified model of the quadriceps muscle. This model will be em-
ployed for nonlinear controller design. A simulation study based on the plant
simulator introduced in Section 3.3.1 is carried out to validate closed-loop
performance.

4.1 Simplified Model for Control Design

As the proposed model in Section 3.1 is too complex to be used in a control
scheme, a simplified model will be derived. A high accuracy of the model is
not required for a robust controller design. The following model is used for
identification and for control design purposes:

ẋ1 = x2 (33)

Jẋ2 = Mg(x1) + Me(x1) + Mv(x2) + Fm(x1, x2)x3 (34)

ẋ3 = ax3 + bu. (35)

Here, x1, x2 and x3 represent respectively the angle, the angular velocity and
the muscle activation level. Fm(x1, x2) is a linear contraction function which
defines the maximum possible active torque in the case of full muscle activa-
tion dependent on the knee-joint angle and the velocity. This relationship is
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modelled as a linear function of the knee-joint angle and the velocity

Fm(x1, x2) = dx1 + ex2 + f. (36)

The control signal u [0-1] represents the normalised and de-saturated stimu-
lation level. The level u = 0 corresponds to the stimulation pulse-width value
where the muscle starts to contract, whereas u = 1 corresponds to the pulse-
width value for which all motor units are recruited by the stimulation, i.e.
the muscle is fully contracted. The parameter JK is the moment of inertia of
the foot-shank complex. Mg = −mgl sin(x1 − x∗

1) represents the gravitational
component, where m is the mass of the foot-shank complex and l is the dis-
tance between the knee and the centre of the mass, and g is the gravitational
constant. The elastic moment is defined by

Me(x1) = −k1 exp(−k2x1)(x1 − k3) (37)

where k1, k2 and k3 are positive coefficients. Viscous joint properties are mod-
elled as a linear damping: Mv = −Bx2, where B is the damping constant.

No complex model of the muscle activation is considered. The activation dy-
namics are modelled as first order linear dynamics, with the parameters a and
b.

4.2 Identification of the Simplified Model

The anthropometric parameters m, JK and l were directly collected from
the plant simulator (Riener and Fuhr, 1998) for this simulation case study.
Then in a simulation, a passive pendulum test was performed in order to
obtain stiffness and damping parameters. When no electrical stimulation is
active, these parameters can be calculated by using a nonlinear least-squares
algorithm applied to the model equations (33-35).

In order to identify the parameters in the simplified contraction function and
the parameters in the activation dynamics, the EKF described in Section 3
was used. The contraction function was simplified to be linear in position
and velocity. This choice is acceptable for controller design and gives a good
approximation of the NRBF network in the interesting range of positions and
velocities for the plant simulator. The number of parameters to describe Fm

was reduced by this from nine to three. The activation dynamics are also
approximated to be a first order system, and a time delay was not considered
in the identification.

The model parameters used in simulations and for controller design are listed
in Table 1. An m-level signal was used as input signal during the EKF iden-
tification. All parameters converged to steady state value by 50 s.
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4.3 Backstepping Control

A nonlinear controller is designed for tracking the knee-joint angle based on
the back-stepping technique in Sepulchre et al. (1997) using the simplified
model of the knee-joint (33-35). The main argument for applying the back-
stepping technique instead of other nonlinear controller design techniques is
the inherent robustness of the resulting controller. A state transformation is
introduced in order to reformulate the tracking problem into a stabilisation
problem. The new states are defined by

ξ1 = x1 − xd (38)

ξ2 = x2 (39)

ξ3 = x3. (40)

Here, ξ1 is the tracking error, and xd represents the reference angle to be
tracked.

By applying this state transformation, the new state-space model becomes

ξ̇1 = ξ2 − ẋd (41)

ξ̇2 =
1

JK

(Mg(ξ1 + xd) + Me(ξ1 + xd) + Mv(ξ2)) +
1

JK

Fm(ξ1 + xd, ξ2)ξ3

(42)

ξ̇3 = aξ3 + bu. (43)

This system possesses an important structure, it is in a strict feedback form.
This means that except for the integrator chain, all other interconnections in
the system are feedback interconnections. For this class of systems the back-
stepping technique can be applied, which offers a constructive way to stabilise
a system. The back-stepping design technique is working recursively. As a
first step, a part of the plant is stabilised. Then this subsystem is augmented
by the next system equation and a new stabilising controller is found using
the already determined control law designed for the previous subsystem in an
efficient way.

We are starting by looking at the first subsystem Σ1 consisting of the state
equation for ξ1:

Σ1 : ξ̇1 = ξ2 − ẋd. (44)

This system can be stabilised by using ξ2 = α1(ξ1) as a virtual control law. We
are now defining an output which we want to regulate to zero. This output is
chosen to be the first state z1 = ξ1. A Control Lyapunov Function (CLF) V1
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is chosen as

V1 =
1

2
z2
1 . (45)

whose time derivative is

V̇1 = z1ż1

= (z1)(−ẋd + α1(ξ1)).
(46)

The virtual control law α1(ξ1) is now chosen to make the time derivative
V̇1 < 0. From Lyapunov stability theory we know, that such a control law is
stabilising the first subsystem. Taking

α1(ξ1) = ẋd − K1z1 (47)

where K1 > 0 is a tuning parameter yields the CLF derivative

V̇1 = −K1z
2
1 . (48)

Hence, the first subsystem is successfully stabilised by the virtual control law
α1(ξ1) since the derivative V̇1 is negative along the trajectories of this subsys-
tem. We are now extending the system to the subsystem Σ2 given by

Σ2 :







ξ̇1 =ξ2 − ẋd

ξ̇2 =
1

JK

(

Mg(ξ1 + xd) + Me(ξ1 + xd) + Mv(ξ2)
)

+
1

JK

Fm(ξ1 + xd, ξ2)ξ3.

(49)

In order to exploit the fact that we found a stabilising controller for the first
subsystem, we rewrite the system by introducing a change in variables z2 =
ξ2 − α1(ξ1).

Σ2 :







ξ̇1 = − ẋd + α1(ξ1) + z2

ξ̇2 =
1

JK

[

Mg(ξ1 + xd) + Me(ξ1 + xd) + Mv(ξ2)
]

+
1

JK

Fm(ξ1 + xd, ξ2)ξ3

(50)

The subsystem Σ1 has now an asymptotic stable origin when z2 is zero. By
introducing ξ3 = α2(ξ1, ξ2) as a virtual control input, we can stabilise this
system. The following CLF is used to stabilise the system Σ2

V2 = V1 +
1

2
JKz2

2 (51)

with the derivative

V̇2 = −K1z
2
1 + z1z2 + z2ż2 (52)

= −K1z
2
1 + z1z2 + z2

(

Mg(ξ1 + xd) + Me(ξ1 + xd) − Bz2 − Bα1 + Fmα2 − JKα̇1

)

.
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The stabilising virtual control law α2(ξ1, ξ2) is taken as

α2(ξ1, ξ2) =
1

Fm

(

− z1 + Bα1 − K2z2−

Mg(ξ1 + xd) − Me(ξ1 + xd) + JKα̇1

) (53)

where K2 > 0 is a tuning parameter. Hence, V̇2 becomes

V̇2 = −K1z
2
1 − (K2 + B)z2

2 < 0. (54)

Then, we are extending the second subsystem with the last state equation of
(41-43). This gives the following system

Σ3 :







ξ̇1 =ξ2 − ẋd

ξ̇2 =
1

JK

(

Mg(ξ1 + xd) + Me(ξ1 + xd)

+ Mv(ξ2)
)

+
1

JK

Fm(ξ1 + xd, ξ2)ξ3

ξ̇3 =aξ3 + bu.

(55)

Again, we are introducing a new change in variables z3 = ξ3 − α2(ξ1, ξ2), and
achieving this system

Σ3 :







ξ̇1 =ξ2 − ẋd

ξ̇2 =
1

JK

(

Mg(ξ1 + xd) + Me(ξ1 + xd)

+ Mv(ξ2)
)

+
1

JK

Fm(ξ1 + xd, ξ2)α2

+
1

JK

Fm(ξ3 + xd, ξ2)z3

ξ̇3 =aξ3 + bu.

(56)

The subsystem Σ2 is asymptotically stable when z3 is zero. We are exploiting
this fact by defining a new CLF for the total system.

V3 = V2 +
1

2γ
z2
3 . (57)

where γ is a tuning parameter introduced to shape the CLF. Differentiation
yields

V̇3 = −K1z
2
1 − (K2 + B)z2

2 + Fmz2z3 + z3ż3

= −K1z
2
1 − (K2 + B)z2

2 +
z3

γ
(aξ3 + bu − α̇2 + γFmz2) . (58)

We are now choosing the final control law to stabilise the overall system

u =
1

b
(−γFmz2 − K3z3 − az3 − aα2 + α̇2) (59)
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where K3 > 0 is a tuning parameter which yields the derivative of the CLF
for the total system:

V̇3 = −K1z
2
1 − (K2 + B)z2

2 −
K3

γ
z2
3 (60)

Now when the control law is defined, it is straight forward to show that the
equilibrium point (z = 0) is asymptotically stable by applying Lyapunov sta-
bility theory (Khalil, 1996).

4.3.1 Extention to Integral Action

In order to compensate for modelling errors and static offset in the model, an
integral action is implemented. Such a controller enables also the rejection of
stepwise constant and slowly varying disturbances like fatigue.

A new state ξ0 is introduced, which is the weighted integral of the tracking
error

ξ0 = λ
∫ t

0
ξ1dτ . (61)

Now, by redefining the first virtual output to be a linear combination of the
first two states

z1 = ξ0 + ξ1 (62)

and reapplying the back-stepping procedure to this modified system, a con-
trol law with integral action is achieved. This controller was used in all the
simulations described in this paper.

4.4 Control Results

In all simulations 20 Hz stimulation frequency is applied, as an implication
the control signal was sampled every 50 ms and a zero order hold was applied.
Generally, tracking performance in angle ranges up to 150 degree was very
good with the designed controller. Above 150 degree the control performance
was decreasing. In order to show the performance and robustness two different
simulation tests were performed. First a sinusoidal reference signal xd varying
between 110 and 150 degree, with a frequency of 0.5 Hz was used. The result
of this test is shown in Figure 11. The knee-joint angle follows the reference
closely with a small phase shift.

The next tests evaluated the robustness of the closed-loop system with re-
spect to changes in the isometric maximal force of the plant simulator. The

19



maximum isometric muscle force in the physiological model was changed for
M. rectus femoris and M. vasti simultaneously to 50 and 150 percent of its
nominal value. In Fig. 12 the tracking of a square wave signal is shown for the
nominal case as well as for the altered plant. It can be observed that tracking
performance is still good when the maximum muscle force is set to 150 percent
of the nominal force. The closed-loop rise time is slightly increased when the
maximum muscle force is assumed to be 50 percent of its nominal value, but
tracking performance is still acceptable.

5 Conclusion

The quadriceps dynamics can be accurately described by the proposed model
structure (modified Hill-type model). An Extended Kalman Filter represents
a good tool to estimate the model parameters and gives state estimates of
the quadriceps-shank dynamic at the same time. A good convergence of the
estimation could be shown in simulations and real experiments.

As only discrete-time joint angle measurements are required for the parameter
and state estimation this method is appealing for use in a clinical set-up; it is
simple and no expensive sensors for velocity and acceleration measurements
are required. However, the algorithm is computational expensive, but compu-
tational power of standard processors is growing steadily, and the real-time
implementation of the algorithm is feasible.

By employing a simplified muscle model a nonlinear controller for knee-joint
tracking was designed based on the back-stepping method. The designed con-
troller showed a good performance at low angle ranges (90-150) degree. At
higher angle ranges the performance was decreasing due to model simplifica-
tions. The decreasing performance at higher angle ranges is probably due to
increasing misfit of model and real plant. We expect to observe this closed-loop
behaviour in real experiments with paraplegic subjects.

The robustness tests have shown that the controller counteracts day-to-day
variations of the maximum isometric muscle force, which can easily occur due
to different electrode placement. The robustness tests give the indication that
the controller can work without performing the identification procedure new
at each session. But real experiments with subjects have to be carried out in
order to verify this hypothesis.

The tuning of the four controller parameters requires a trial and error proce-
dure, which only has to be carried out once.
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The integration of the EKF in nonlinear adaptive strategies for control of the
paralysed lower limbs by means of FES is planned.
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Tables and Figures

Table 1
Parameters for the simplified model used for controller design.

m [kg] l [m] JK [kgm2] B [Nms
rad ] k1 [Nm

rad ] k2 [ 1
rad ]

4.3 0.28 0.39 0.6 7.9 1.68

k3 [rad] a [1s ] b [1s ] d [Nm
rad ] e [Nms

rad ] f [Nm]

1.17 -13.2 0.1 -35.9 -4.7 124.9

Electrical
stimulation

CoG (Shank & foot)

l

Ma

x1
x∗

1

mg

Fig. 1. Experimentel set-up.

23



Nonlinear
contraction
function
(NRBF network)

0
1

2
3

−4
−2

0
2

4

0

50

100

150

200

250

 

 

 

 Activation dynamics

1

0 0

1

Time

Calcium dynamics
+ time delay

Recruitment Curve

pw Ma

x1x2

st

Fm(x1, x2)

act

x1
x2

Tdpwthr pwsat

Fig. 2. Nonlinear model of the quadriceps muscle group.
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