
http://eprints.gla.ac.uk/3197/
Symmetry in temporal logic model checking

ALICE MILLER, ALASTAIR DONALDSON and MUFFY CALDER
University of Glasgow

Temporal logic model checking involves checking the state-space of a model of a system to determine whether errors can occur in the system. Often this involves checking symmetrically equivalent areas of the state space. The use of symmetry reduction to increase the efficiency of model checking has inspired a wealth of activity in the area of model checking research. We provide a survey of the associated literature.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program Verification—Correctness proofs; Validation
General Terms: Theory, Verification
Additional Key Words and Phrases: Model checking, symmetry, quotient graph

1. INTRODUCTION
As software controlled systems expand and become more complex, the importance of error detection at design time increases. It is estimated [Schneider 2003] that 70% of design time is spent on simulation, to minimize the risk that errors are exposed at a later stage in production, involving costly redesign.

Temporal logic model checking [Clarke et al. 1999; Merz 2000; Müller-Olm et al. 1999] is a technique whereby properties of a system can be checked by building a model of the system and checking whether the model satisfies the properties. The model is constructed using a specification language, and checked using an automatic model checker. Failure of the model to satisfy a desired property of the system indicates either that the model does not accurately reflect the behaviour of the system, or that there is an error (bug) in the original system. Examination of counter-examples provided by the model checker enable the user to either refine the model or, more importantly, to debug the original system.

Any search technique used in model checking involves the exploration of the state-space associated with the model. Inherent symmetry of the original system will be reflected in the state-space. Therefore, knowledge of the symmetry of the system can be used to avoid searching areas of the state-space which are symmetrically equivalent to areas that have been searched previously.

Several different approaches and techniques have been proposed for using symmetry to reduce the size of the state-space to be explored. Some of these have been
implemented within widely used model checkers [Boesch et al. 2002; Hendriks et al. 2003; Ip and Dill 1996; McMillan 1994; Wang and Schmidt 2002]. Indeed, there is even a model checker designed primarily for the verification of highly symmetric systems [Sistla et al. 2000]. In this paper we survey and classify the existing research in this area.

Note that some of the methods discussed in this paper have recently been surveyed in some detail [Sistla 2004]. Specifically, that paper describes methods based on annotated quotient structures (AQSs) and the related guarded quotient structures (GQSs). We discuss these approaches in Sections 4.2, 4.6 and 4.7, and describe how they are implemented using the SMC model checker in Section 5.1. Our survey has a much broader scope than [Sistla 2004]. We include the methods described above within the wider context of symmetry reduction methods for model checking in general, and we describe a greater range of systems that employ symmetry reduction methods.

2. MODEL CHECKING

Temporal logic model checking [Clarke et al. 1999; Merz 2000; Müller-Olm et al. 1999] is an automatic technique for verifying finite state concurrent systems. The type of systems that we are concerned with maintain a continuing interaction with their environment, and are referred to as reactive systems. Model checking involves the construction of a model of a system, usually in the form of a Kripke structure, and the verification of temporal logic properties of this model.

Let V denote a set of variables and, for each $v \in V$, let $D(v)$ be the domain of v. The set of atomic propositions over V is given by

$$AP = \{(v = val) : v \in V \text{ and } val \in D(v)\}.$$

For a given set of variables V a Kripke structure is defined in terms of AP thus:

Definition 1. A Kripke structure \mathcal{M} over AP is a tuple $\mathcal{M} = (S, R, L, S_0)$ where:

1. S is a non-empty, finite set of states
2. $R \subseteq S \times S$ is a total transition relation, that is for each $s \in S$ there exists $t \in S$ such that $(s, t) \in R$
3. $L : S \to 2^{AP}$ is a mapping that labels each state in S with the set of atomic propositions true in that state
4. $S_0 \subseteq S$ is a set of initial states.

A path in \mathcal{M} is an infinite sequence of states $\pi = s_0, s_1, s_2, \ldots$ such that $s_0 \in S_0$ and, for all $i > 0$, $(s_{i-1}, s_i) \in R$. Similarly, a transition sequence is an infinite sequence of transitions. For states s and t it is common to denote the transition from s to t by $s \rightarrow t$.

We often refer to the state-space associated with a system. By this we mean the Kripke structure of the associated transition system. Because of the graphical nature of the state-space, it is sometimes referred to as the state graph associated with the system.

In practice, reactive systems are described using modelling languages, including (pseudo) programming languages such as PROMELA [Holzmann 2003] or the SMV

ACM Journal Name, Vol. V, No. N, Month 20YY.
Model checking involves checking the truth of a set of specifications defined using a temporal logic. Generally the temporal logic that is used is either CTL^*, or one of its sublogics CTL (computation tree logic) [Clarke et al. 1986], or LTL (linear temporal logic) [Pnueli 1981].

2.1 Syntax and Semantics of CTL^*, CTL and LTL

The logic CTL^* is defined as a set of state formulas, where the CTL^* state and path formulas are defined inductively below. The quantifiers A and E are used to denote for all paths, and for some path respectively (where $E\phi = \neg A\neg\phi$). In addition, X, U, $\langle \cdot \rangle$ and $[\cdot]$ represent the standard nexttime, strong until, eventually and always operators (where $\langle \cdot \rangle\phi = true U\phi$ and $[\cdot]\phi = \neg\langle \cdot \rangle\neg\phi$ respectively). Let AP be a finite set of propositions. Then

- for all $p \in AP$, p is a state formula
- if ϕ and ψ are state formulas, then so are $\neg\phi$, $\phi \land \psi$ and $\phi \lor \psi$
- if ϕ is a path formula, then $A\phi$ and $E\phi$ are state formulas
- any state formula ϕ is also a path formula
- if ϕ and ψ are path formulas, then so are $\neg\phi$, $\phi \land \psi$ and $\phi \lor \psi$, $X\phi$, $U\psi$, $\langle \cdot \rangle\phi$ and $[\cdot]f$

The logic CTL is the sublogic of CTL^* in which the temporal operators X, U, $\langle \cdot \rangle$ and $[\cdot]$ must be immediately preceded by a path quantifier. The logic LTL is obtained by restricting the set of (CTL^*) formulas to those of the form $A\phi$, where ϕ does not contain A or E. When referring to an LTL formula, one generally omits the A operator and instead interprets the formula ϕ as “for all paths π”.

For a model \mathcal{M}, if the CTL^* formula ϕ holds at a state $s \in S$ then we write $\mathcal{M}, s \models \phi$ (or simply $s \models \phi$ when the identity of the model is clear from the context). The relation \models is defined inductively below. Note that for a path $\pi = s_0, s_1, \ldots$, starting at s_0, $\text{first}(\pi) = s_0$ and, for all $i \geq 0$, π_i is the suffix of π starting from state s_i.

- $s \models p$, for $p \in AP$ if and only if $p \in L(s)$
- $s \models \neg\phi$ if and only if $s \not\models \phi$
- $s \models \phi \land \psi$ if and only if $s \models \phi$ and $s \models \psi$
- $s \models \phi \lor \psi$ if and only if $s \models \phi$ or $s \models \psi$
- $s \models A\phi$ if and only if $\pi \models \phi$ for every path π starting at s
- $\pi \models \phi$, for any state formula ϕ, if and only if $\text{first}(\pi) \models \phi$
- $\pi \models \neg\phi$ if and only if $\pi \not\models \phi$
- $\pi \models \phi \land \psi$ if and only if $\pi \models \phi$ and $\pi \models \psi$
- $\pi \models \phi \lor \psi$ if and only if $\pi \models \phi$ or $\pi \models \psi$
- $\pi \models U\psi$ if and only if, for some $i \geq 0$, $\pi_i \models \psi$ and $\pi_j \models \phi$ for all $0 \leq j < i$
- $\pi \models X\phi$ if and only if $\pi_1 \models \phi$
- $\pi \models \langle \cdot \rangle\phi$ if and only if $\pi_i \models \phi$, for some $i \geq 0$
$\neg \pi \models \mathcal{L} \phi$ if and only if $\pi_i \models \phi$, for all $i \geq 0$.

2.2 Büchi automata and LTL

One of the most efficient algorithms for model checking LTL properties is the automata-theoretic approach (see Section 2.3.2). Although we will not describe the algorithms in detail, we provide a little background theory here.

Definition 2. A finite state automaton (FSA) \mathcal{A} is a tuple $\mathcal{A} = (S, s_0, L, T, F)$ where:

1. S is a non-empty, finite set of states
2. $s_0 \in S$ is an initial state
3. L is a finite set of labels
4. $T \subseteq S \times L \times S$ is a set of transitions, and
5. $F \subseteq S$ is a set of final states.

A run of \mathcal{A} is an ordered, possibly infinite, sequence of transitions $(s_0, l_0, s_1), (s_1, l_1, s_2), \ldots$

where $s_i \in S$ and $l_i \in L$ for all $i > 0$. An accepting run of \mathcal{A} is a finite run in which the final transition (s_{n-1}, l_{n-1}, s_n) has the property that $s_n \in F$.

In order to reason about infinite runs of an automaton, alternative notions of acceptance, e.g. Büchi acceptance, are required. We say that an infinite run (of a FSA) is an accepting ω-run (i.e. it satisfies Büchi acceptance) if and only if some state in F is visited infinitely often in the run. A Büchi automaton is a FSA defined over infinite runs (together with the associated notion of Büchi acceptance).

Every LTL formula can be represented as a Büchi automaton (see, for example [Vardi and Wolper 1994] and references therein). For more details of automata and logic see, for example, [Holzmann 2003].

2.3 Model checking algorithms

The model checking problem can be stated as follows:

Given a Kripke structure \mathcal{M} and a temporal logic formula ϕ, determine the set of initial states in \mathcal{M} that satisfy ϕ.

Generally we say that the model \mathcal{M} satisfies the specification ϕ if all of the initial states of \mathcal{M} satisfy ϕ.

In this section we give a brief overview of the basic model checking algorithms for checking CTL and LTL formulas respectively, and describe techniques that are used to combat the state-space explosion problem for each. Note that a method for checking CTL* properties [Emerson and Lei 1987] involves the use of an LTL model checker on the subformulas of the property to be checked. However, most model checkers are used to verify either CTL or LTL properties, but not both.

2.3.1 CTL model checking. The model checking algorithm for CTL [Clarke et al. 1986; Clarke et al. 1994; Quelle and Sifakis 1982] works by successively marking states which satisfy subformulas of the formula to be checked. The particular form of the algorithm used depends on the formula. For illustration, we
give here an example of how the algorithm proceeds to check formula ϕ, where ϕ is $A(\phi_1 U \phi_2)$.

For a state s, $s \models \phi$ if and only if either s satisfies ϕ_2 or s has at least one successor, s satisfies ϕ_1 and all successors of s satisfy ϕ. Initially all states are marked to indicate whether they satisfy ϕ_1 and/or ϕ_2 and/or ϕ, and also with a number (nb say), denoting how many successors have yet to be marked as satisfying ϕ. Initially for each state s, nb is set to 0 if $s \models \phi$, or to the number of successors of s otherwise. In the latter case, each time a successor of s is marked as satisfying ϕ, nb is decremented by one. When $nb = 0$ for s, clearly $s \models \phi$. When no states can be remarked, the algorithm terminates. If, at this point, all initial states are marked as satisfying ϕ, then $\mathcal{M} \models \phi$.

2.3.2 LTL model checking. The model checking problem for LTL can be restated as: “given \mathcal{M} and ϕ, does there exist a path of \mathcal{M} that does not satisfy ϕ?” One approach to LTL model checking is the tableau approach described in [Müller-Olm et al. 1999]. However, we concentrate here on the more efficient automata-theoretic approach [Lichtenstein and Pnueli 1985; Vardi and Wolper 1986].

In order to verify an LTL property ϕ, a model checker must show that all paths of a model \mathcal{M} satisfy ϕ (alternatively, find a counterexample, namely a path which does not satisfy ϕ). To do this, an automaton A representing \mathcal{M} is constructed, together with an automaton $B_\neg \phi$ which accepts all paths for which $\neg \phi$ holds. The two automata are synchronised (in practice this usually means taking alternate steps). Any run of A that violates ϕ is accepted by $B_\neg \phi$, signifying an error. If there are no accepting runs, $\mathcal{M} \models \phi$. Generally to prove LTL properties, a depth-first search is used. As the search progresses, all states visited are stored (in a reduced form) in a hash array (or heap), and states along the current path are pushed on to the stack.

If the property ϕ to be verified is a safety property, say $\phi =]\psi]$, where ψ does not contain the until operator U, then a depth-first search is used to search the entire search space. If a state is encountered at which ψ is false, then ϕ is false and the current path (the current contents of the stack) provides a counter-example. If, on the other hand, ϕ is a liveness property, then determining the truth, or otherwise, of ϕ relies on the ability to detect the presence of infinite accepting runs in the state space. This is achieved either by using the classic approach of Tarjan [Tarjan 1972] in which the strongly connected components of the state graph are constructed and analysed separately for acceptance runs, or via a nested depth-first search [Courcoubetis et al. 1992]. A nested depth-first search is more efficient than the classic approach in that it is not necessary to produce all acceptance runs, just a single acceptance cycle (if one exists). Suppose, for example ϕ is $]]p]$, for some proposition p. From any state s reached during an initial search at which $\neg p$ holds, a second search is initiated to check for paths leading back to s, during which p remains false. If no such path exists, the original search resumes from s.

2.3.3 The state-space explosion problem. One of the main problems associated with model checking is that of state-space explosion. The model checking algorithms described above both rely upon the explicit construction of a model representing all of the possible system states. The number of states for a system with associated
model \mathcal{M} is potentially exponential with respect to the number of processes in
the system. As a result, full verification is often impossible. Therefore techniques
are used to try to reduce the memory required to store each state (e.g. symbolic
state representation, see below) or the number of states or paths explored (e.g.
on-the-fly methods and partial order reduction, see below). Another method used
to reduce the number of states is symmetry reduction, in which subsets of symmet-
rically equivalent states are collapsed into a single representative state. Symmetry
reduction is described in full in Section 4.

2.3.4 Symbolic model checking. Symbolic model checking [Burch et al. 1992] is
a method by which states and transitions of a model are represented symbolically
(as opposed to explicitly) in order to save space. A particular symbolic approach
(namely BDD-based encoding) has proved especially successful for the verification
of CTL properties for very large systems [McMillan 1993].

A binary decision tree is a structure that is used to represent a boolean formula.
Any assignment of truth values to the variables of the formula corresponds to a
path down the tree from the root node to a terminal node, which is labelled either
true or false. The value of this label determines the value of the function for this
assignment of variables. A binary decision diagram (BDD) is obtained from a
binary decision tree by merging isomorphic subtrees and identical terminals. Any
set of states can be encoded as a BDD. Indeed, if S is a set of states encoded as
a set of boolean tuples (on a set X), then for any fixed ordering of the elements of
X, there is a unique BDD representing S [Bryant 1992].

An ordered binary decision diagram (OBDD) is a BDD which has a total or-
dering applied to the variables labelling the vertices of the diagram. The size of the
OBDD can vary greatly depending on the ordering used. Heuristics have been
developed to find efficient orderings for a given formula (when such an ordering
exists). However, finding the optimal ordering is NP-complete [Bollig and Wegener
1996].

For a Kripke structure, both the set of states and the set of transitions can be
represented by BDDs. All possible states are encoded, as opposed to all reachable
states. As the superfluous states are unreachable, they do not affect the result
of model checking. Indeed, their presence may lead to a simplification of certain
BDDs. In addition, it is possible to first compute the reachable states, R say, and
then restrict the CTL model checking algorithm to R.

2.3.5 On-the-fly model checking. It is not always necessary to build the entire
state-space in order to determine whether or not a system satisfies a given property.
If the property to be checked is \emph{false}, only part of the state-space needs to be
constructed, up to the point at which an error state (safety property) or a violating
cycle (liveness property) is discovered. However, if there are no errors, the entire
state-space must be constructed. This means that although debugging can be
performed relatively easily, property verification very quickly becomes prohibitive.

On-the-fly methods are most suitable for model checking algorithms based on a
depth-first traversal of the state-space (i.e. explicit state methods) and have been
developed to check specifications in LTL, CTL and CTL^* [Vardi and Wolper 1986;
Vergauwen and Lewi 1993; Bhat et al. 1995].

ACM Journal Name, Vol. V, No. N, Month 20YY.
Some approaches for combining on-the-fly techniques with symbolic model checking exist [Ben-David and Heyman 2000], but are restricted to the checking of safety properties.

2.3.6 Partial order reduction. The explosion of states and transitions in a model results from the interleaving of actions of distinct processes in all possible orders. In general, the consideration of all such interleavings is crucial — bugs in concurrent systems often correspond to unexpected ordering of actions. However, if a set of transitions are entirely independent and are invisible with respect to the property being verified, the order in which they are executed does not affect the overall behaviour of the system. (A transition is invisible with respect to a property ϕ if the truth of ϕ is unaffected by the transition.) Partial order reduction [Emerson et al. 1997; Godefroid 1996b; Peled 1996a] exploits this fact, and considers only one representative ordering for any set of concurrently enabled, independent, invisible transitions.

Partial order reduction methods rely on determining a suitable subset of transitions to be considered at every state. As a result, rather than exploring a structure \mathcal{M} an equivalent (usually smaller) structure \mathcal{M}' is explored, with fewer transitions and fewer states.

The particular subset (and, correspondingly, equivalence relation) depends upon the strategy being used. A common strategy, for example, is the ample sets method [Peled 1996b]. This is the method chosen for the partial order reduction implementation in SPIN [Holzmann 2003; Holzmann and Peled 1994]. In this case, suppose that a property ϕ is to be verified. For any state s, reached along a search path, rather than considering all of the transitions enabled at s, (enabled(s)), an ample set (ample(s)) of transitions is chosen in such a way to ensure that

— any transition $t \in$ enabled(s) which is not in ample(s) is independent of all transitions in ample(s). That is, the execution of t does not affect the enabledness of any of the transitions in ample(s), and vice versa.
— All transitions in ample(s) are invisible.
— If $a \in$ ample(s), then the state resulting from taking transition a from s has not been reached along the current search path.

The equivalence relation in this case is trace equivalence. Two transition sequences are said to be trace equivalent if one can be obtained from the other by repeatedly commuting the order of adjacent, independent transitions. Using the ample sets method, every transition sequence in the original structure \mathcal{M} is trace equivalent to a transition sequence in the reduced structure \mathcal{M}'. It follows that, for any stuttering-closed [Peled 1996b] LTL formula ϕ, $\phi \models \mathcal{M}$ if and only if $\phi \models \mathcal{M}'$.

Other strategies for determining suitable subsets of transitions include the stubborn sets method [Valmari 1992], or the sleep sets and persistent sets method [Godefroid 1996b] which is implemented in VeriSoft [Godefroid 1997].

For some systems, where all actions are dependent on one another, partial order reduction cannot offer any improvement in verification space or time. In many realistic cases however, partial order reduction can be extremely effective. For example, for some systems the growth of the state-space as the number of processes increases is reduced from exponential to polynomial when partial order methods are
used. In others the global state-space may increase with the growth of a parameter whereas the size of the reduced state-space remains unchanged [Godefroid 1996a].

2.4 Example model checkers

2.4.1 Explicit state-based model checkers. Two of the most popular on-the-fly, explicit-state based model checkers are SPIN [Holzmann 2003] and Murϕ [Dill et al. 1992; Dill 1996].

SPIN is used for efficient software verification. Specifications are described using the high level state-based description language PROMELA (PROcess MEta LAnguage), which is loosely based on Dijkstra’s guarded command language [Dijkstra 1976]. PROMELA allows for the expression of non-determinism, asynchronous and synchronous communication, dynamic process creation and mobile communications (communication channels can contain references to other communication channels). SPIN uses a depth-first search algorithm (breadth-first search is also possible) and can be used as a full LTL model checking system, supporting all correctness requirements expressible in linear time temporal logic (or Büchi automata directly). It can also be used as an efficient on-the-fly verifier for more basic safety and liveness properties (e.g. progress and lack of deadlock) which can often be expressed, and verified, without the use of LTL.

SPIN has been used to trace logical errors in distributed systems designs, such as operating systems [Cattel 1994; Kumar and Li 2002], computer networks [Yuen and Tjoe 2001], and railway signalling systems [Cimatti et al. 1997], and for feature interaction analysis of telecommunications and email systems [Calder and Miller 2001; 2003; Holzmann and Smith 1999b].

To optimise verification runs, SPIN uses efficient partial order reduction techniques, and also employs statement merging [Holzmann 1999], a special case of partial order reduction which merges internal, invisible process statements to reduce the number of reachable system states. For efficient state-storage, SPIN offers state compression (a form of byte-sharing) or, alternatively, BDD-like storage techniques based on minimised automata [Visser and Barringer 1996]. In addition, approximate hashing methods are available, namely hash-compact methods [Wolper and Leroy 1993] and bitstate hashing [Holzmann 1998].

The Murϕ description language is based on a collection of guarded commands (condition/action rules), which are executed repeatedly in an infinite loop. The data structures and guarded commands are written in an imperative style language together with new data types which include “multiset”, for describing a bounded set of values whose order is irrelevant to the behaviour of the description, and “scalarset” for describing a subrange whose elements can be freely permuted. The Murϕ verifier performs depth- or breadth-first search over the state-space to check for deadlock or for assertion or invariance violations. Assertion violations are trapped using an Assert statement (a conditional error statement) within the program description. Invariants, on the other hand, are defined in a separate part of the Murϕ description. More complex temporal properties cannot be verified.

Other state-based verifiers include PROD [Varpaaniemi et al. 1995] and PEP [Best and Grafhmann 1996] in which systems are specified using Petri nets. On-the-fly verification of various temporal or µ-calculus properties of LOTOS specifications is achieved by translation into state-spaces using CESAR [Garavel and Sifakis]
which are then checked using model checkers XTL [Mateescu and Garavel 1998] or EVALUATOR [Mateescu 2003] respectively. The tool COSPAN [Kunshan 1995] uses an automata theoretic approach. The system to be verified is modelled as a collection of communicating processes described in the S/R (selection/resolution) modelling language. The verifier supports both on-the-fly enumerative search and symbolic search using BDDs.

2.4.2 Symbolic model checkers. The most successful (OBDD-based) symbolic model checker is the branching time CTL model checker SMV [McMillan 1993]. Systems are described using the SMV language which has been developed with a precise semantics relating programs to their expression as boolean formulas. SMV supports both synchronous and asynchronous communication, and provides for modular hierarchical descriptions, and for the definition of reusable components. SMV has been used to verify various hardware systems, including an avionics triple sensor voter [Danjani-Brown et al. 2003], the Gigamax cache coherence protocol [McMillan and Schwabhe 1992] and the J9000 virtual channel processor [Barrett 1995]. NuSMV [Cimatti et al. 1999; Cimatti et al. 2002] is a reimplemented and extended version of SMV. The additional features included with NuSMV include a textual interaction shell and graphical interface, extended model partitioning techniques, and facilities for LTL model checking.

An enhanced version of SMV, RuleBase [Beer et al. 1996] is an industry oriented tool for the verification of hardware designs. In an effort to make the specification of CTL properties easier for the non-expert, RuleBase supports its own language, Sugar. In addition, RuleBase supports standard hardware description languages such as VHDL and Verilog.

2.4.3 Real time model checkers. When modelling certain critical systems it is essential to include some notion of time. If time is considered to increase in discrete steps (discrete-time) then existing model checkers can be readily extended [Alur and Henzinger 1992; Emerson 1992]. The most widely used dense real time model checker (in which time is viewed as increasing continuously) is UPPAAL [Larson et al. 1997]. Models are expressed as timed automata [Alur and Dill 1993] and properties defined in UPPAAL logic, a subset of timed computational tree logic TCTL [Alur et al. 1990]. UPPAAL uses a combination of on-the-fly and symbolic techniques [Larson et al. 1995; Yi et al. 1994] to reduce verification problems to that of manipulating and solving simple constraints. Another real time model checker is KRONOS [Yovine 1997], which is used to analyse real-time systems modelled in several timed process description formalisms such as ATP [Nicollin and Sifakis 1994] and ET-LOTOS [Léonard and Leduc 1997; 1998]. A real-time extension to COSPAN [Alur and Kunshan 1995] allows real-time constraints to be expressed by associating lower and upper bounds on the time spent by a process in a local state. An execution is said to be timing-consistent if its steps can be assigned real-valued time-stamps that satisfy all the specified bounds.

The probabilistic model checker PRISM [Kwiatkowska et al. 2002; Rutten et al. 2004] allows time to be considered as increasing either in discrete steps or continuously. Models are expressed in the PRISM language and converted to a variant of a Markov chain (either discrete or continuous time). Properties are written in...
terms of probabilistic Computation Tree Logic (PCTL) or continuous stochastic logic (CSL) respectively. Models can also be expressed using PEPA (performance evaluation process algebra) [Hillston 1996] and converted to PRISM.

The hybrid model checker HYTech [Henzinger et al. 1997] is used to analyse dynamical systems whose behaviour exhibits both discrete and continuous change. Linear hybrid automata (extensions to timed automata including access to dynamic variables) are used to incorporate the discrete behaviour of computer programs with the continuous behaviour of environment variables, such as time.

2.4.4 Direct model checking of programs. Finite state model checking traditionally requires the manual construction of a model, via a modelling language, which is then converted to a Kripke structure (or finite state automaton) for model checking.

Recently there has been much interest in applying model checking directly to program source code written in languages such as Java or C. Early approaches to model checking Java software, like JCAT [Demartini et al. 1999] and Java PathFinder (JPFL) [Havelund and Pressburger 2000], involved the direct translation of Java code into Promela, and subsequent verification via SPIN. Although both of these systems were successful, direct translation meant that programs were only able to contain features that were supported by both Java and Promela. (This is not true of floating point numbers, for example.)

The BANDERA tool [Corbett et al. 2000] avoids direct translation by instead extracting an abstracted finite state model from Java source code. This model is then translated into a suitable modelling language (Promela or SMV) and model checked accordingly. Meanwhile a second generation Java PathFinder tool (JPF2) [Visser et al. 2000], which makes extensive use of the BANDERA abstraction tools, has been developed to model check Java bytecode directly.

The dSPIN tool [Iosif and Sisto 1999] is an extension of SPIN which has been designed for the modelling and verification of object oriented software (Java programs in particular). In addition to the usual features available with SPIN, the dSPIN model checker allows for the dynamic creation of heap objects and the representation of garbage collection.

The Bogor model checking framework [Robby et al. 2003] is used to check sequential and concurrent programs. The behavioural aspects of the program are first specified in JML (Java modelling language) which, together with the original Java program, is then translated into a lower level specification for verification. Bogor exploits the canonical heap representation of dSPIN and is implemented as an Eclipse [Clayberg and Rubel 2004] plug-in.

Various tools address the problem of direct model checking of C code. For example BLAST (Berkeley Lazy Abstraction Software verification Tool) [Henzinger et al. 2003] uses an iterative process of abstraction, verification and counterexample-driven refinement for proving correctness of software. The FeaVer (FEature VERification system) tool [Holzmann and Smith 1999a] allows models to be extracted mechanically from the source of software applications and checked using SPIN. Indeed, a new feature of SPIN is to allow C code to be embedded directly within a Promela specification. Microsoft’s SDV (Static Driver Verifier) tool uses the SLAM [Ball et al. 2004] analysis engine to analyse the source code of Windows device drivers. SDV involves a similar abstraction, verification and refinement loop.
to that of BLAST and exploits the BEBOP model checker during the verification stage.

The VeriSoft model checker [Godefroid 1997] is used to verify concurrent processes executing C code. Unlike traditional model checking techniques, the use of VeriSoft does not rely on states being expressed as sequences of bits. Systematic search of the state-space allows one to check for deadlock and assertion violations, as well as for timeouts and livelocks. A stateless search is used whereby only states along the current path are stored, together with as many states as possible in the remaining available memory. As a result, state-space explosion is not a problem—it is theoretically possible to verify systems of any size. However, as as result, the same path may be explored many times, and so the search can be very slow.

Note that we have not attempted to provide an exhaustive description of available model checkers, merely to provide sufficient coverage for the purposes of our symmetry survey. We do not, for example, consider conformance checkers or combination checkers. For an overview of these types of checkers, refer to [Clarke and Wing 1996].

3. BASIC GROUP THEORY

In this section we summarise some definitions from group theory which will be useful throughout.

Definition 3. Let \(G \) be a non-empty set, and let \(\circ : G \times G \to G \) be a binary operation. We say that \((G, \circ)\) is a group if:

- \(G \) is closed under \(\circ \)
- \(\circ \) is associative
- \(G \) has an identity element \(1_G \) and
- for each element \(\alpha \in G \) there is an inverse element \(\alpha^{-1} \in G \) such that \(\alpha \circ \alpha^{-1} = \alpha^{-1} \circ \alpha = 1_G \).

We call the operation \(\circ \) *multiplication* in \(G \). When it is clear what the binary operation is, we simply refer to a group as \(G \) rather than \((G, \circ)\), and use concatenation to denote multiplication. Let \(H \) be a non-empty subset of a group \(G \). If \(H \) is a group in its own right under the binary operation of \(G \), i.e. it satisfies Definition 3, then we call \(H \) a subgroup of \(G \) and write \(H \leq G \). For elements \(\alpha_1, \alpha_2, \ldots, \alpha_n \) of a group \(G \), the set \(\langle \alpha_1, \alpha_2, \ldots, \alpha_n \rangle \) denotes the smallest subgroup of \(G \) containing \(\alpha_1, \alpha_2, \ldots, \alpha_n \), and is called the subgroup *generated* by \(\alpha_1, \alpha_2, \ldots, \alpha_n \).

Let \(X \) be a finite set. A permutation of \(X \) is a bijection from \(X \) to \(X \). The set of all permutations of \(X \), \(Sym \, X \), forms a group under composition of mappings. Any subgroup of this group is called a permutation group acting on the set \(X \). If \(G \) is a permutation group acting on \(X \) and \(\alpha_1 \) and \(\alpha_2 \) elements of \(G \), then, for any \(x \in X \), \(\alpha_1(x) \) denotes the result of applying \(\alpha_1 \) to \(x \), and \(\alpha_1 \circ \alpha_2(x) = \alpha_1(\alpha_2(x)) \) the result of applying \(\alpha_1 \) to \(\alpha_2(x) \). Consider the set \([n] = \{1, 2, \ldots, n\}\). The group of all permutations acting on \([n]\) is called the *symmetric group on \(n \) points*, and is denoted \(S_n \), or equivalently \(S_{\{1, 2, \ldots, n\}} \).
If G is a permutation group acting on a finite set X, then for $x \in X$ the set
$\{\alpha(x) : \alpha \in G\}$ is called the orbit of x under G, denoted $[x]_G$. For x and $y \in X$, we use $x \sim_G y$ to denote that x and y are in the same orbit. The relation \sim_G is an equivalence relation on X, and hence partitions X into disjoint subsets, which are the orbits of X under G. Sometimes it is useful to identify the orbits of a set X under a group G as a set of representative elements (one chosen for each orbit). We use the notation $\text{rep}(|[s]_G|$) to denote the representative element of the orbit containing the element s.

4. SYMMETRY REDUCTION METHODS IN MODEL CHECKING

4.1 Symmetry reduction in automatic verification

The earliest use of symmetry reduction in automatic verification was in the context of high-level (coloured) Petri nets [Huber et al. 1984] where reduction by equivalent markings was used to construct finite reachability trees. These ideas were later extended for deadlock detection and the checking of liveness properties in place/transition nets [Starke 1991].

Concurrent systems often contain many replicated components and, as a consequence, model checking may involve making a redundant search over equivalent areas of the state-space. For example, Figure 1 shows a Kripke structure for a model of two process mutual exclusion. The model consists of two processes, each with three local states N, T and C. For process i, the proposition N_i denotes that process i is in the neutral state. Similarly, the propositions T_i and C_i denote that process i is in the trying and critical state respectively. There is a global variable, tok, which takes the value 1 or 2 depending which process holds the token. Only if process i is in the trying state (i.e. T_i holds) and $tok = i$ also holds can process i can move into the critical state. When a process leaves the critical state, the token is non-deterministically assigned the value 1 or 2. Thus in the model it is not possible for both processes to be in the critical state. That is, the mutual exclusion property holds. Note that there are two initial states (indicated with a bold outline in Figure 1). In each of the initial states both processes are in the neutral state and one of the processes has the token.

Though simple, this example clearly demonstrates the existence of symmetry within a Kripke structure. In terms of the mutual exclusion property, any pair of states $(A_1B_2$, token $= i)$ and $(B_1A_2$, token $= j)$, where A and B belong to
$\{N, T, C\}$ and $i \neq j$, are equivalent (state $(A_1B_2$, token $= i)$ will satisfy the mutual exclusion property if and only if $(B_1A_2$, token $= j)$ does). Most symmetry reduction techniques exploit this type of symmetry by restricting state-space search to equivalence class representatives, and often result in significant savings in memory and verification time [Bosnacki et al. 2002; Clarke et al. 1996; Emerson and Sistla 1996; Ip and Dill 1996].

4.2 Symmetry reduction using quotient structures

Let $\mathcal{M} = (S, R, L, S_0)$ be a Kripke structure over a set of atomic propositions AP. An automorphism of \mathcal{M} is a permutation $\alpha : S \rightarrow S$ which preserves the transition relation. That is α satisfies the following condition:

$$\forall s, t \in S, \ (s, t) \in R \Rightarrow (\alpha(s), \alpha(t)) \in R.$$
In a model of a concurrent system with many replicated processes, Kripke structure automorphisms may involve the permutation of process identifiers or data values throughout all states of the model. On the other hand, a model may include a data structure which has geometrical symmetry [Holzmann and Joshi 2004]. In this case Kripke structure automorphisms involve applying the geometrical symmetries throughout all states of the model.

The set of all automorphisms of the Kripke structure \(\mathcal{M} \) forms a group under composition of mappings. This group is denoted \(\text{Aut}(\mathcal{M}) \). A subgroup \(G \) of \(\text{Aut}(\mathcal{M}) \) partitions the set \(S \) of states into disjoint orbits, as described in Section 3, which can be used to define a quotient Kripke structure \(\mathcal{M}_G \):

Definition 4. The quotient Kripke structure \(\mathcal{M}_G \) of \(\mathcal{M} \) with respect to \(G \) is a tuple \(\mathcal{M}_G = (S_G, R_G, L_G, S^0_G) \) where:

- \(S_G = \{ [s]_G : s \in S \} \) (the set of orbits of \(S \) under the action of \(G \)),
- \(R_G = \{ ([s]_G, [t]_G) : (s, t) \in R \} \),
- \(L_G([s]_G) = L(\text{rep}([s]_G)) \) (where \(\text{rep}([s]_G) \) is a unique representative of \([s]_G\)),
- \(S^0_G = \{ [s]_G : s \in S_0 \} \) (the orbits of the initial states \(S_0 \) under the action of \(G \)).

If \(G \) is non-trivial then the quotient structure \(\mathcal{M}_G \) is smaller than \(\mathcal{M} \). For any \(s \), the size of \([s]_G\) is bounded by \(|G|\), and so the theoretical minimum size of \(S_G \) is \(|S|/|G|\). Since for highly symmetric systems we may have \(|G| = n!\), where \(n \) is the number of components, symmetry reduction potentially offers a considerable reduction in memory requirements.

In practice the set of states \(S \) is taken to be the set of orbit representatives rather than the orbits themselves. To give an example of a quotient structure, for the mutual exclusion example shown in Figure 1, observe that swapping the process indices 1 and 2 throughout all states is an automorphism of the structure. Let \(\alpha \) denote this automorphism. Then for this example, \(\text{Aut}(\mathcal{M}) = \{ \alpha, 1 \} \), where 1 is the identity mapping. Choosing a unique representative from each orbit we obtain a quotient Kripke structure \(\mathcal{M}_{\text{Aut}(\mathcal{M})} \) as illustrated by Figure 2.
Fig. 2. Quotient Kripke structure for 2 process mutual exclusion

It can be shown [Clarke et al. 1996; Emerson and Sistla 1996] (see Theorem 1 below) that a model and its quotient structure satisfy the same symmetric CTL^* formulas. A CTL^* formula ϕ is symmetric, or invariant, with respect to G if for every maximal propositional sub formula f appearing in ϕ, and for every $\alpha \in G$, $M, s \models f \iff M, \alpha(s) \models f$.

Theorem 1. if M and M_G denote a model and its quotient model with respect to a group G respectively, then M_G is bisimulation equivalent to M, and therefore $M, s \models \phi \iff M_G, [s]_G \models \phi$, for every symmetric CTL^* formula ϕ.

As an example, consider the 2 process mutual exclusion property “it is not possible for both processes to be in the critical section at the same time”. In terms of the propositions used to label the structures represented by Figures 1 and 2, this property is expressed in CTL^* as $A[(\neg(C_1 \land C_2))].$ Let us call this property ϕ_1. Clearly ϕ_1 is symmetric with respect to the automorphism group $\{\alpha, 1\}$, where α is defined as above. Thus the Kripke structure represented by Figure 1 satisfies ϕ_1 if and only if the quotient structure represented by Figure 2 does. Therefore, to check the mutual exclusion property, it is sufficient to check the quotient model only. Note that the quotient model also satisfies the property ϕ_2 defined as $A[(\neg C_2)]$. However, as ϕ_2 is not symmetric with respect to the automorphism group, we cannot infer the truth (or otherwise) of ϕ_2 for the original Kripke structure. (Indeed, ϕ_2 is clearly not true for the original structure.)

The algorithm of Figure 3 (adapted from) [Ip and Dill 1996], shows how a quotient structure can be explored incrementally if symmetries of the Kripke structure can be identified before search. In this case it may be possible to build the quotient structure even though the original structure is intractably large.

An approach that is suggested for symmetry reduction during automata-based model checking involves the construction of an annotated quotient structure (AQS) [Emerson and Sistla 1996; Sistla 2004]. In this case there is a labelled edge between representative states $[s]_G$ and $[t]_G$ for every edge that exists (in M) from $rep([s]_G)$ to an element of $[t]_G$. If $(rep([s]_G), t')$ were such an edge (in M), and π the permutation such that $\pi(rep([t]_G)) = t'$, then the edge (in the annotated quotient
\[
\text{reached} := \{ \text{rep}(s) : s \in S_0 \} ;
\]
\[
\text{unexplored} := \{ \text{rep}(s) : s \in S_0 \} ;
\]
\[
\text{while } \text{unexplored} \neq \emptyset \text{ do }
\]
\[
\text{remove a state } s \text{ from } \text{unexplored} ;
\]
\[
\text{for all successor states } q \text{ of } s \text{ do }
\]
\[
\text{if } \text{rep}(q) \text{ is not in } \text{reached} \text{ then }
\]
\[
\text{append } \text{rep}(q) \text{ to } \text{reached} ;
\]
\[
\text{append } \text{rep}(q) \text{ to } \text{unexplored} ;
\]
\[
\text{end if}
\]
\[
\text{end for}
\]
\[
\text{end while}
\]

Fig. 3. Algorithm to explore a quotient Kripke structure

structure) would be labelled with \(\pi \). Not only is it possible to \textit{unwind} the original structure \(M \) from the (annotated) quotient structure, but it is also possible to check properties expressed in \textit{indexed CTL\(^*\)} – an extension to \textit{CTL\(^*\)} in which properties include the indexed quantifiers \textit{for all processes or for some process}. In addition, properties to be checked are not required to be symmetric with respect to the group \(G \). We discuss the use of \textit{AQSSs} to verify properties under fairness assumptions in Section 4.6.2.

4.3 Identifying symmetry

The first step which must be accomplished by any method which exploits symmetry is the identification of symmetries in a model. Let \(M \) be a Kripke structure. An obvious approach to solving this problem would be to construct \(M \), and then to find a symmetry group \(G \) of \(M \) using a standard algorithm (e.g. \textit{nauty} [McKay 1981]). These symmetries could be used to reduce \(M \) to a quotient model, \(M_G \).

This approach is flawed in two ways. First, finding automorphisms of a Kripke structure is equivalent to checking for state-space isomorphism, which for large state-spaces is a hard problem (no polynomial time algorithm is known [McKay 1981]). Secondly, if enough resources were available to construct \(M \) then symmetry reduction would be unlikely to be of much benefit. Indeed, the power of reduction techniques is that they allow a reduced model to be checked even when the unreduced model is intractable.

Thus the problem is to find symmetries of \(M \) \textit{without} building \(M \) explicitly. For simple concurrent programs consisting of a finite number of isomorphic (identical up to renaming) processes executing in parallel, communicating via shared variables, a subgroup of the automorphism group of \(M \) can be determined from the \textit{communication relation} of the program [Emerson and Sistla 1996]. The \textit{communication relation} \(CR \) of the program \(P = \prod_{i=1}^{n} P_i \) is defined as the undirected graph \(CR = ([n], E) \), where \{i, j\} \(\in E \) iff processes \(p_i \) and \(p_j \) share a variable.

\textbf{Theorem 2.} If \(M \) is the global state transition state-space of \(P = \prod_{i=1}^{n} P_i \) where all \(p_i \) are normal and isomorphic then \(\text{Aut}(CR) \leq \text{Aut}(M) \).

The group \(\text{Aut}(CR) \) may be automatically computed since \(CR \) is typically small compared to \(M \), or may simply be known in advance.

Theorem 2 applies to systems in which all variables are shared between at most two processes, and all processes are of the same type. This result is generalised
[Clarke et al. 1998] to remove this restriction via the introduction of the coloured hypergraph $HG(\mathcal{P})$ of a shared variable program \mathcal{P}. The node set of the hypergraph

$HG(\mathcal{P})$ is $[n]$ and there is a hyper edge $w \subseteq [n]$ if the program \mathcal{P} has a variable shared by all process p_i, $i \in w$. Each node is assigned a colour, so that two processes p_i and p_j are isomorphic iff nodes i and j have the same colour in the coloured hypergraph. Two processes are isomorphic in this case if they are of the same process type, and have equivalent sets of transitions.

Theorem 3. Let $HG(\mathcal{P})$ be the hypergraph corresponding to the program $\mathcal{P} = \bigotimes_{i=1}^n p_i$. Let M be the Kripke structure corresponding to \mathcal{P}. Given these conditions, $\text{Aut}(HG(\mathcal{P})) \leq \text{Aut}(\mathcal{M})$.

Another approach to symmetry detection involves the detection of symmetries in the state-space by annotation of the system description via a purpose-built data type [Ip and Dill 1993]. The data type is called a scalarset which acts as documentation that certain symmetries hold in a specification expressed in the Murϕ description language [Dill et al. 1992]. A scalarset is an integer subrange with restricted operations as follows:

—An array with a scalarset index type can only be indexed by a scalarset variable of exactly the same type.
—A term of scalarset type must be a variable reference. (A scalarset may not appear as an operand to + or any other operator in a term.)
—Scalarset variables may only be compared using $=$, and in such cases, must be of exactly the same type.
—For all assignments $d := t$, if d is a scalarset variable, t must be a term of exactly the same scalarset type.
—If a scalarset variable is used as an index of a for statement, the body of the statement is restricted so that the result of the execution is independent of the order of the iterations.

The restrictions are sufficient to ensure that consistent permutation of scalarset variables in all states corresponds to an automorphism of the state-space. Furthermore, violations of the restrictions can be detected in polynomial time [Ip and Dill 1996]. In the following theorem, a permutation α_s is a permutation on the elements of scalarset s that acts on the states of M by permuting state components.

Theorem 4. Given a source program containing a scalarset s, every permutation α_s on the states of the state-space M derived from the program is an automorphism of M.

Corollary 1. If a program \mathcal{P} has scalarsets s_1, s_2, \ldots, s_n, there are symmetries in the state graph M and we can use the symmetry-reduced state graph M_G to perform verification, where G is the set of all permutations of the states with respect to s_1, s_2, \ldots, s_n.

An example of the use of scalarsets is in the verification of the Needham-Shroeder public key protocol [Mitchell et al. 1997]. The protocol involves a set of Initiator processes and a set of Receptor processes. Each Initiator process is identified by the variable Initiatorid which is used to index an array ini storing the state of each
Initiator process. The Initiatorid variable is also used as an index within a for loop containing the rules determining the behaviour of each Initiator process. As the Initiator processes behave symmetrically, by declaring the Initiatorid variable as a scalarset, symmetry reduction can be automatically performed. Similarly, a scalarset (Receptorid) can be used to identify symmetry between the Receptor processes.

The use of scalarsets described above exploits structural symmetry (symmetry between the processes themselves). The scalarset approach can also be used to exploit data symmetry. A scalarset that is used to denote data symmetry is referred to as a data scalarset.

Definition 3. A scalarset s is a data scalarset in a source program P if s is not used as an array index or for statement index.

If a protocol uses a data scalarset, then it is said to be data independent [Wolper 1986]. In this case, symmetry reduction can be used to reduce an infinite state space (in which data is unbounded) to a finite state space (with bounded data) thus:

Theorem 5. If P is a source program, s is the name of a data scalarset in P and P_1 and P_2 are programs identical to P except that s is declared to be of size N_1 in P_1 and N_2 in P_2, then there exists $N_s > 0$ such that the symmetry-reduced state graphs of P_1 and P_2 are isomorphic whenever $N_1 ≥ N_s$ and $N_2 ≥ N_s$.

However this application of scalarsets is seldom required as abstraction can be used to eliminate redundant data values [Clarke et al. 1994]. Data symmetry reduction will be discussed again in Section 4.8.

The original scalarset approach [Ip and Dill 1996] only considered the verification of simple safety properties of the form $AG(\neg \text{error})$. However, scalarsets have been successfully used to exploit symmetry during the verification of more general LTL formulas [Bosnacki et al. 2002]. A major drawback to scalarsets is that they only allow the specification of total (or full) symmetries (where all of the processes of a given type can be permuted among themselves), so could be applied to a system of processes connected as a clique, say, but not, for example, as a ring. An alternative data type, called circularset [Ip 1996] and additional extensions to the scalarset data type [Donaldson et al. 2005b] have been proposed to handle systems with ring structure and more general systems respectively. However, these alternatives share with the scalarset approach the problem that the modeller must identify symmetry in the model and use the appropriate data type to specify the presence of this symmetry. This means that symmetry reduction using scalarsets is not a “push button” reduction technique.

In the message-passing paradigm (in which processes communicate by sending messages on buffered channels), structural symmetries of a model can be automatically extracted from the program text of a model by using a graph automorphism package such as nauty [McKay 1981] or saucy [Darga et al. 2004] to analyse the static channel diagram (a graphical representation of the communication structure) of the original system [Donaldson et al. 2005a]. This approach is not limited to total symmetries, and has been applied to detect symmetry in PROMELA models [Donaldson and Miller 2005]. A similar approach [Manku et al. 1998] uses GAP.

4.4 The orbit problem

The crux of exploiting symmetry when model checking is that during search, when a state \(s \) is reached, we must test whether an element \(t \) has already been reached such that \(s = \alpha(t) \) for some \(\alpha \in G \) (i.e. \(\langle s \rangle _G = \langle t \rangle _G \)). This is known as the orbit problem, and is central to all model checking methods that exploit symmetry. Techniques must be used to either solve the orbit problem efficiently, or to somehow avoid it altogether.

In the design of protocols and sequential circuits it is common to model a system using a set of boolean state variables \(x_1, x_2, \ldots, x_n \). In such cases the symmetry group \(G \) is also given in terms of state variables, so that a permutation \(\alpha \) acting on \(\{1, 2, \ldots, n\} \) acts on a state vector \(s \in B^n \) as follows [Clarke et al. 1996]:

\[
\alpha((x_1, x_2, \ldots, x_n)) = (x_{\alpha(1)}, x_{\alpha(2)}, \ldots, x_{\alpha(n)})
\]

Definition 6. The orbit problem [Clarke et al. 1996] Let \(G \) be a group acting on the set \(\{1, 2, \ldots, n\} \). Given two vectors \(x, y \in B^n \), the orbit problem is thus: does there exist a permutation \(\alpha \in G \) such that \(y = \alpha(x) \)?

The orbit problem is related to the graph isomorphism problem:

Definition 7. Two graphs \(G_1 = (V_1, E_1) \) and \(G_2 = (V_2, E_2) \) are isomorphic if there is a bijection \(f : V_1 \rightarrow V_2 \) such that \((f(x), f(y)) \in E_2 \) if and only if \((x, y) \in E_1 \). The mapping \(f \) is said to be an isomorphism between \(G_1 \) and \(G_2 \).

The problem of determining if two graphs are isomorphic is known as the graph isomorphism problem and is very difficult to solve (although not widely believed to be \(NP \)-complete). In some cases (for example, when the maximum degree of the two associated graphs is known to be bounded by a given constant) isomorphism can be determined in polynomial time. However, in general, the graph isomorphism problem is shown to be highly combinatorially expensive.

Theorem 6. [Clarke et al. 1996] The orbit problem is as hard as the graph isomorphism problem.

In fact, the orbit problem has been shown to be equivalent to a well known problem in computational group theory, the set stabiliser in a coset (SSC) problem:

Definition 8. Given a set \(X \subseteq [n] \), a group \(G \subseteq S_n \), and a group element \(\alpha \in S_n \), is there an element \(\sigma \) in the coset \(G_{\alpha} = \{ \beta \alpha : \beta \in G \} \) which stabilises the set \(X \), i.e. \(\sigma(X) = X \).

Theorem 7. [Clarke et al. 1998; Jha 1996] The orbit problem and the SSC problem are polynomially equivalent.

The SSC problem is known [Hoffman 1982; Luks 1991] to be equivalent to several computational group theory problems in \(NP \) which are harder than graph isomorphism, but not known to be \(NP \)-complete.

If BDDs are used to represent the state-space of a model then exploiting symmetry becomes more complex, as the orbit relation of a symmetry group must be represented as a BDD. The orbit relation of a group \(G \) is the set of pairs \(\{(s, t) : t \in [s]\} \).
The BDD of the orbit relation induced by a transitive group (a group acting on
a set such that every element of the set is moved by some element of the group)
is exponential in the minimum of the number of components in a system and the
number of states in one component [Clarke et al. 1996]. Since transitive groups
occur commonly in models of concurrent systems, the combination of standard
symmetry reduction techniques with symbolic model checking is limited. We dis-
cuss some methods which avoid the construction of the orbit relation for symbolic
model checking in Section 4.5.

For concurrent programs, modelling using boolean variables is cumbersome, and
it is usual instead to model a state as a vector in $[k]^n$, where k is the size of the set
of possible process locations. The action of a symmetry group $G \subseteq S_n$ on a vector
$(x_1, x_2, \ldots, x_n) \in [k]^n$ is analogous to that for a vector in B^n as described above
[Clarke et al. 1996].

When attempting to exploit symmetry a representative function rep is often re-
quired which maps a state s to the unique representative of its orbit (see Definition 4
and Figure 3). In practice it is convenient to use the lexicographically least element
in the orbit as a representative.

**Definition 9. The constructive orbit problem (COP) [Clarke et al. 1998;
Jha 1996] Given a group acting on $[n]$ and a vector $x = (x_1, \ldots, x_n) \in [k]^n$ find the
lexicographically least element in the orbit of x.**

Theorem 8. [Clarke et al. 1998; Jha 1996] The COP is NP-hard.

In Section 4.5.5 we discuss certain classes of symmetry group for which the COP
can be solved in polynomial time.

4.5 Simplifying the orbit problem

4.5.1 Multiple representatives. As discussed in the previous section, combining
symmetry reduction with symbolic model checking may not be effective due to the
exponentially large BDDs which are required to represent the orbit relation. By
using multiple representatives from each orbit, this problem can be avoided to some
extent [Clarke et al. 1996; Clarke et al. 1998]. If G is a set of automorphisms, a
subset C of G is chosen which is closed under inverses and contains the identity
element. The set of representatives Rep is selected so that each orbit (of the set of
states S under G) has at least one element in Rep and, for every $s \in S$, there is
some $a \in C$ such that $a(s) \in Rep$. The size of Rep (and consequently the size of
the resulting quotient model) depends heavily on the choice of C, hence C must be
chosen carefully. The state-space of the quotient model is not reduced (with respect
to the original model) as much as with unique representatives. However, multiple
representatives reduce the size of the BDDs required to store the state-space, and
thus are more effective when symbolic representation of states is used.

In practice, BDDs reduced through multiple representatives may still be in-
tractably large. Approaches using generic representatives or computing representa-
tives dynamically, which we discuss below in Sections 4.5.2 and 4.5.3 respectively,
have been shown to outperform the multiple representatives approach [Emerson
and Wahl 2003; 2005a].
4.5.2 Generic representatives. For symbolic model checking of fully symmetric systems using BDDs, a method which uses generic representatives avoids both the orbit problem and construction of the orbit relation [Emerson and Trefler 1999]. This method involves translating the source program for a model into a reduced program, which can be explored using standard model checking algorithms. The idea of generic representatives is best explained using an example. For a basic model of mutual exclusion with three processes (and no token), the states $(N_1, N_2, T_3), (T_1, N_2, N_3)$ and (N_1, T_2, N_3) are all equivalent. This is because there are two processes in the neutral local state and one in the trying local state in each of the three global states. The generic representative of these states is $(2N, 1T)$. A generic representative indicates how many processes are in each local state, but does not refer to individual processes. Thus the reduced program abstracts from processes to counters, with one counter for each local state, indicating the number of processes currently in that state.

This approach is extended [Emerson and Wahl 2003] to include systems with global shared variables. The translation of a program into reduced form is polynomial in the length of the program and the approach compares well to those using unique or multiple representatives. However, benefits of this approach can be negated due to the local state explosion problem, where the number of potential local states of a process is exponential in the number of local variables. Since the reduced program requires one counter per local state, BDD representations which require bits to be reserved for each counter become infeasible. Techniques have been proposed to limit local state explosion based on live variable analysis (similar to the data flow optimisations provided by SPIN [Holzmann 2003]) and local reachability analysis [Emerson and Wahl 2005b]. The generic representatives approach is also very limited as it only applies to fully symmetric systems which are simple enough to be amenable to counter abstraction [Emerson and Wahl 2005a].

4.5.3 Dynamic computation of representatives. Another approach to combining symmetry reduction techniques with symbolic representation, for CTL model checking, involves determining orbit representatives dynamically during fixpoint iterations [Emerson and Wahl 2005a]. Instead of building a representation of the quotient structure for a model, this approach works by computing transition images with respect to the unreduced structure, then mapping the new states to their respective representatives. This approach is not restricted to fully symmetric systems, and can handle data symmetry (see Section 4.8) as well as process symmetry. A potential bottleneck here is the operation of swapping bits in the BDD representation of the model, which must be performed repeatedly during representative computation. The complexity of such swaps depends exponentially on the distance, in the BDD variable ordering, between the variables to be swapped. To avoid this problem, permutations are expressed as a product of transpositions of adjacent elements. Experimental results show that this approach outperforms the use of multiple and generic representatives (see Sections 4.5.1 and 4.5.2 respectively) when applied to a queueing lock algorithm and a buggy version of a cache coherence protocol.

4.5.4 On-the-fly representative selection. Model checking algorithms that use depth-first search (DFS) can be adapted so that the first element of an orbit en-
countered during the search is chosen as the orbit representative [Gyuris and Sistla 1999]. However, this approach is not suitable for symbolic model checking techniques as DFS is very inefficient in the context of BDD state representation. On-the-fly orbit representative selection is possible during breadth-first search (BFS) when the choice of representative is guided using BDD-specific criteria [Barner and Grumberg 2002].

4.5.5 “Easy” classes of groups. For the following classes of automorphism group G (acting on a model of a system of n processes), the constructive orbit problem (COP) can be solved in polynomial time [Clarke et al. 1998; Jha 1996]:

$-G$ has order polynomial in n, for example a cyclic or dihedral group, or the group associated with an $n \times n$ torus

$-G$ is the full symmetric group S_n

$-G$ is a disjoint product or wreath product of groups for which the COP is polynomial time solvable

$-G$ is generated by transpositions

Note that, when G is the full symmetric group S_n, the lexicographically least (lex-least) element of the orbit of a state can be obtained by sorting the state-vector. When G has order polynomial in n the COP can be solved by enumerating the orbit of a state. In the other cases, the lex-least element is found by sorting segments of the state-vector individually.

4.5.6 Using orbit representatives in practice. The scalarset method [Ip and Dill 1996] assumes the existence of a canonicalisation function (in which states are replaced by a unique equivalence class representative) or a normalisation function (in which a subset of states are used as multiple representative states). For symmetry reduction in Murϕ a suitable canonicalisation function [Ip and Dill 1993] applies all permutations to a state s and returns the lexicographically smallest image. An approach using a normalisation function is also suggested, in which the state-vector is split into two parts. For a given state, a permutation ϕ is selected that produces the lexicographically smallest image of the first (most significant) part of the associated state vector. The representative state chosen is the concatenation of the image of the two parts of the state vector (under ϕ).

The use of normalisation and canonicalisation functions with scalarsets is extended [Boenacki et al. 2001] using heuristics to choose the order in which variables are positioned in the state-vector. This ordering determines, for example, which variables are most significant and appear in the first (leftmost) part of the split state-vector. One approach, the sorted strategy, involves the identification of an array indexed by a scalarset type (the main array) and placing it in the leftmost position of the state-vector. In another approach, the segmented strategy, the lexicographically smallest image of the second part of the state-vector, with respect to all of the permutations that canonicalise the first part, is used in the representative state. There is trade off between reduction in memory requirements and faster verification for the sorted and segmented strategies. The segmented strategy yields canonical representatives, but is more computationally expensive than the sorted strategy. On the other hand, use of the sorted strategy may result in several states.
from the same equivalence class being explored.

A further two approaches, \textit{pc-sorted} and \textit{pc-segmented}, are also suggested, for systems in which no suitable main array exists but the process identities are of type scalar-set. In this case a main array is constructed, containing the program counters. A prototype implementation of this approach is implemented in the SymmSpin package [Boenacki et al. 2000; 2002], which we discuss in Section 5.1.

A canonicalisation function is suggested, again within the context \textsc{Spin} [Nalumasu and Gopalakrishnan 1995], for systems with any (user-defined) symmetry. Though less restrictive than the scalar-set approach (full symmetry is not required and more general operations on permutable variables are permitted), a unique canonicalisation function must be constructed manually by the modeller for every individual model, thereby limiting the applicability of the method.

4.6 Combining symmetry reduction with other techniques

Basic symmetry reduction does not take into account the more sophisticated techniques associated with model checking. In this section we discuss how symmetry reduction can be safely combined with partial order reduction, and modified to successfully handle fairness.

4.6.1 Symmetry and partial order reduction. Partial order reduction (see Section 2.3.6) and symmetry reduction are orthogonal reduction techniques. They can therefore be successfully used in conjunction, resulting in larger savings in memory and verification time.

The combination of the two techniques was first suggested in the context of Petri nets [Valmari 1989]. This approach applies to the stubborn sets method of partial order reduction and is restricted to deadlock detection.

The idea of combining two reductions simultaneously is extended to verifying next-time free \textsc{LTL} properties via model checking [Emerson et al. 1997]. Indeed, an algorithm is given combining partial-order reduction and any bisimulation preserving equivalence. When the equivalence is the automorphism relation, the algorithm proceeds as follows: from any state \(s \) an ample set of transitions is calculated. The orbit representatives of any states reachable via these transitions are then explored. A similar algorithm, combining the persistent sets method of partial order reduction with symmetry reduction is used within the stateless search technique implemented in VeriSoft [Godefroid 1999].

4.6.2 Exploiting symmetry under fairness assumptions. Fairness is vital for proving liveness properties, as it reflects the basic requirement that processes are executing at an indefinite but positive speed [Emerson and Sistla 1997]. Two important kinds of fairness are weak fairness and strong fairness. Given a Kripke structure \(\mathcal{M} \), an infinite path \(\pi \) of \(\mathcal{M} \) is strongly fair if each process that is enabled infinitely often is executed infinitely often. A path \(\pi \) is weakly fair if any process that is continuously enabled is executed infinitely often.

Fairness is generally incompatible with basic symmetry reduction methods because the progress of an individual process along a path of the quotient structure cannot be tracked in the usual way. Each state of the quotient structure is labelled according to the representative of an equivalence class of states in the original structure, and for a transition \(s \rightarrow t \) in the original model, it may not be the case that
transition $rep([s]_G) \rightarrow rep([t]_G)$ also occurs in the quotient model.

These fundamental problems are overcome when the automata theoretic approach using annotated quotient structures (see Section 4.2) is used, in the context of (inherently symmetric) fair indexed CTL^* properties [Emerson and Sistla 1997; Sistla 2004]. An annotated quotient structure M_G is used together with an automaton A which accepts only fair computations. An efficient algorithm, based on finding maximal strongly connected components (MSCCs) [Tarjan 1972] (see Section 2.3.2) is presented for model-checking fair indexed CTL^* formulas under the assumption of strong and (by implication) weak fairness. Correctness results (including liveness properties) are verified for a resource controller example using a prototype (fair) model checker. Comparison with an unreduced model indicates an exponential reduction in the number of stored states.

This approach to symmetry reduced model checking has been extended to the on-the-fly case [Gyuris and Sistla 1999] in which $M_G \times A$ is checked during construction. The approach also exploits state symmetries [Emerson and Sistla 1996]. A state symmetry of a state s is a permutation $\alpha \in Aut(M)$ on process indices such that $\alpha(s) = s$. If processes i and j have the same local state in global state s, and if $\alpha(i) = j$, then only the transitions made from state s by process i need to be considered, saving space and computation time. The resulting algorithm is exploited in the Symmetry Based Model Checker (SMC) [Sistla et al. 2000], which we discuss in Section 5.1.

A parallel approach to model checking with symmetry reduction and weak fairness [Boscacci 2003] combines the weak fairness algorithm implemented in SPIN [Holzmann 2003] (based on the Choelka flag algorithm [Chouela 1974]) with a symmetry reduction algorithm [Boscacci 2002] based on the nested depth first search (NDFS) approach to model checking [Holzmann et al. 1996]. As well as exploiting the usual advantages over the MSCC algorithms, the NDFS approach is compatible with approximate verification techniques, such as the hash-compact method and bitstate hashing (see section 2.4.1).

4.7 Exploiting symmetry in less symmetric systems

Many systems which occur commonly in practice are comprised of several similar, but not all identical processes. An example is the readers-writers problem [Emerson and Trefler 1999], where m reader processes and n writer processes access a shared resource, for some $m, n > 0$.

A writer always has priority over a reader when both are trying to access the shared resource. If M is a model of this system, then M is not fully symmetric. In fact $Aut(M) = S_{[1, 2, \ldots, m]} \times S_{[m+1, m+2, \ldots, m+n]}$—readers can be permuted, writers can be permuted, but readers cannot be interchanged with writers.\(^1\) However, the state graph is symmetric in every sense except for transitions from a state where two processes are attempting to access the shared resource.

It is possible to exploit this kind of almost symmetry during model checking. Indeed, by defining different classes of "symmetry", such as near or rough symmetry [Emerson and Trefler 1999], or virtual symmetry [Emerson et al. 2000], it is still possible to infer temporal logic properties of the system by model checking a suitable

\(^1\)Assuming there are no symmetries other than those which permute process ids.
quotient graph using the entire group S_{m+n} as the automorphism group.

Suppose M is a model of a system, and I the set of process identifiers associated with M. Then a permutation $\alpha \in Sym I$ is said to be a near automorphism of M if, for every transition $s \rightarrow t$ of M, either $\alpha(s) \rightarrow \alpha(t)$ is a transition of M or s is totally symmetric with respect to $Aut(M)$. (That is, s is invariant under $Aut(M)$.) The model M is said to be nearly symmetric if it has a suitable group of near automorphisms G_n.

If, on the other hand, G_r a subgroup of $Sym I$, then M is roughly symmetric with respect to G_r if for every pair of states s and s' where $s \sim_{G_r} s'$, any transition from s is matched by a transition from s' provided the associated local transition (from s') would involve a process with the highest priority. If M is a nearly (roughly) symmetric model with respect to group G_n (G_r) then, despite the lack of complete symmetry, the quotient model M_{G_n} (M_{G_r}) is bisimilar to the original model M. It follows that symmetry reduction preserves all symmetric CTL^* properties.

Both near and rough symmetry are subsumed by the notions of virtual and strong virtual symmetry [Emerson et al. 2000]. As well as systems with static priorities (which can already be described via rough symmetry) virtual symmetry applies to systems where resources are asymmetrically shared according to dynamic priorities.

The symmetrisation R'^G of a transition relation R by a group G is defined by

$$R'^G = \{ \alpha(s) \rightarrow \alpha(t) : \alpha \in G \text{ and } s \rightarrow t \in R \}.$$

Intuitively, symmetrising a transition relation can be thought of as the process of adding transitions which are missing due to asymmetry in the system.

A structure M is said to be virtually symmetric with respect to a group G_v acting on S if for any $s \rightarrow t \in R'^G$, there exists $\alpha \in G_v$ such that $s \rightarrow \alpha(t) \in R$. In addition, if for any $s \rightarrow t \in R'^G$, there exists α in Fix(s, G_v) (the largest subgroup of G_v which fixes s) such that $s \rightarrow \alpha(t) \in R$, then M is said to be strongly virtually symmetric with respect to G_v. If a Kripke structure M is (strongly) virtually symmetric with respect to a group G_v, then M is bisimilar to the quotient model M_{G_v}, and model checking of symmetric properties can be performed over M_{G_v}. A procedure is given to identify the case where a Kripke structure is strongly virtually symmetric with respect to a group G_v. This procedure involves local counting of transitions which are present in R'^G but absent in R. Virtual symmetry has been successfully combined with the generic representatives approach (see Section 4.5.2) for the case where processes are fully interchangeable with respect to virtual symmetry [Wei et al. 2005]. This allows symmetry-reduced symbolic model checking of partially symmetric systems, using the NuSMV model checker [Cimatti et al. 2002] (see Section 2.4.2).

A method involving the symmetry reduction of models with little or no symmetry uses guarded annotated quotient structures (GQSs) [Sistla 2004; Sistla and Godefroid 2004]. These structures are an extension to the annotated quotient structures [Emerson and Sistla 1996; 1997; Gyuris and Sistla 1999], discussed in Section 4.2. Suppose M is the Kripke structure of a system, and $M' \supseteq M$ is obtained from M by adding transitions (in a similar manner to the process of symmetrisation described above), so that M' has more symmetry than M. A guarded annotated quotient structure for M can be viewed as an annotated quotient structure for M', with edges labelled to indicate which processes can make the transition (in M).
Thus the original edges of M can be recovered from the representation of M'. A temporal formula ϕ can be checked over the guarded annotated quotient structure by unwinding the structure, even if ϕ is not symmetric with respect to the automorphisms used for reduction. This approach potentially allows large factors of reduction to be obtained since a larger group of automorphisms is used than would be possible using standard quotient structure reduction. Indeed, experimental results, using the SMC model checker [Sistla et al. 2000], show how the GQS method is applied effectively to a system of prioritised processes.

A recent extension to the GQS approach [Sistla et al. 2004] involves (symmetry reduced) model checking of extended CTL (CCTL) properties (which involve an additional construct, COUNT, for specifying the number of components in a given state). This extended logic is more expressive than indexed CTL (see Section 4.2).

Properties are again not restricted to being fully symmetric in an alternative automata theoretic approach [Ajami et al. 1998], but must be partially symmetric. For example consider the following property: “if some process is waiting for a resource then it will get it, provided none of the processes with higher identity will require the resource in the future”. To check the satisfaction of a formula ϕ for a model M, with set of states S, a set of equivalence relations are first computed between states of B, the Büchi automaton representing ϕ. If G is a symmetry group of M, one equivalence relation is defined for every element of G. Two states $b_1, b_2 \in B$ are equivalent with respect to $\alpha \in G$ if and only if the predecessors and successors of b_1 are mapped to the predecessors of b_2 and the successor of b_2 respectively (and vice versa). The quotient graph is then constructed by applying the equivalence relations to the pairs of states $(s, b) \in S \times B$. The approach is extended [Haddad et al. 2000] to partially symmetric models by representing the model itself as the synchronised product of a symmetric model and an asymmetric Büchi automaton. The method is illustrated using well-formed Petri nets.

4.8 Exploiting data symmetry

Most of the symmetry reduction methods described in this paper relate to structural symmetry. However, as discussed in Section 4.3, another form of symmetry, namely data symmetry, can be exploited to increase the effectiveness of model checking. In Section 4.3 we discussed the application of scalar sets to exploit data symmetries.

As software specifications often involve large data structures with vast numbers of values, it may be impossible to check that properties hold for every feasible assignment of values to the data set. That is, it may not be possible to check the properties for every interpretation of the model. It is therefore desirable to only check representative models for each equivalence class of interpretations.

This use of data equivalence is exploited for software analysis using the Nitpick specification tool [Jackson et al. 1998].

5. IMPLEMENTATIONS OF SYMMETRY REDUCTION

In this section we list the major tools for which symmetry reduction has been implemented. This is not intended as an exhaustive exposition, but as a selective illustration.
5.1 Explicit state methods

Murϕ The Murϕ description language is the first language to have been augmented with the scalarset data type (see Section 4.3). As a result, the Murϕ verification system [Dill et al. 1992] (see Section 2.4) is the first to implement symmetry reduction using scalarsets [Ip and Dill 1996] and has inspired many of the other implementations discussed in this section.

An automorphism group for the state-space is determined statically from the Murϕ description and consists of all permutations that permute scalarset variables. The lexicographically smallest member of each orbit is used as the orbit representative and a suitable canonicalisation function (see Section 4.5.6) is used to map every state to its orbit representative.

Murϕ has been used to verify a number of highly symmetric algorithms (for example Peterson's n-process mutual exclusion algorithm [Peterson 1981]) and a lock implementation for the Stanford DASH multiprocessor [Lenceki et al. 1992].

The Murϕ tool has been extended with two alternative classes of algorithm for representative computation [Juntilla 2004]. The first class of algorithms transforms each state encountered during search to a characteristic graph, and derives a canonical state representative from the canonical form of this graph. The nauty graph isomorphism tool [McKay 1981] is used to perform canonicalisation operations. The other class of algorithms uses ordered partitions on states, and during canonicalisation considers only permutations which are compatible with the partitioning of a given state. This approach mimics the partitioning approach commonly used by graph isomorphism algorithms [McKay 1981].

SMC The Symmetry based Model Checker (SMC) [Sistla 2004; Sistla et al. 2000] is an explicit state model checker which has been specifically designed for the verification of highly symmetric systems. Exploiting both process symmetry and state symmetry, in addition to proving safety properties, SMC is the only model checker that can be used to effectively verify liveness properties under both strong and weak fairness assumptions. Model checking is performed using a technique [Gyuris and Sistla 1999] involving annotated quotient structures (AQSs) (see Sections 4.2 and 4.6.2). The AQS can be constructed either in advance or on-the-fly. For on-the-fly construction, it is also possible to store the edges of the AQS during construction. If the edges are not stored considerable space savings can be made. However, verification time is increased dramatically.

The input language of SMC uses a syntax similar to that of Murϕ [Dill et al. 1992]. Processes are separated into modules such that all processes in a given module are identical up to renaming. (Note that these modules are analogous to the scalar sets used by Murϕ.) Symmetry can not be exploited in programs where there is not total symmetry within each component type, e.g., in a token ring network.

The AQS is constructed incrementally, and the first state of an orbit encountered during search is used as the representative for that orbit. State symmetries of a state s are detected by partitioning processes within each module into equivalence classes. A leader process is chosen from each equivalence class, and only transitions from s made by one of the leader processes are explored. Reached states are stored in a hash-structure, and a hashing function is used which always hashes equivalent states.
to the same location, and desirably hashes inequivalent states to different locations. For a state \(s \), the hashing function returns \(\text{Checksum}(s) \mod b \), where \(b \) is the hash-table size. The checksum for a state is computed from the values of variables in that state. Each time a state is to be stored at a position in the hash-table, a check is made to see if the state is equivalent to any other state in that position in the table. Two states with differing checksums cannot be equivalent, so SMC performs the pre-test of comparing checksums before checking the equivalence of two states. In many cases this quickly shows the nonequivalence of states.

To check whether two states with equal checksums are equivalent, a polynomial time bounded, randomised algorithm is used which runs in quadratic time. This algorithm sometimes falsely reports that two equivalent states are not equivalent, which may result in the construction of a larger-than-optimal AQS (but is not unsafe).

SMC has been used to check the correctness of the link layer part of the IEEE standard 1394 “Firewire” protocol [IEEE-1394 1995], and also a resource controller example. The resource controller example shows that exploiting state symmetry can speed up verification considerably when the number of processes is high. Recent extensions of SMC [Sistla and Godefroid 2004; Sistla et al. 2004] enable partially symmetric systems with priorities to be verified over a GQS, and properties to be expressed in an extended form of CTL.

SymmSpin Symmetric SPIN (SymmSpin) [Bosnacki et al. 2002] is a symmetry reduction package for the SPIN model checker [Holzmann 2003] (see Section 2.4.1). To allow process symmetry of a system to be specified, the *scalarset* data type [Ip and Dill 1996] is used. However, to avoid modifying the PROMELA parser, rather than directly extending the PROMELA language with the scalarset data type, all of the symmetry information is provided (by the user) in a separate file. This is called the *system description file* and identifies which variables have the scalarset type.

For a given Promela model, SPIN generates a verifier for the model in the form of a C program which is compiled and executed. SymmSpin modifies this program to add symmetry reduction via a *representative function* which, for a given state, computes an orbit representative for the state. For a given orbit the representative is the least element with respect to a specified canonicalisation function or one of the minimal elements computed via a normalisation function (see Section 4.5.6). During search SymmSpin stores the original states on the stack and representative states on the heap (see Section 2.3.2). This means that counterexample traces generated by SymmSpin correspond to real counterexample traces through the model, rather than the representatives of a counterexample trace.

Experiments using SymmSpin show that for certain models the factor of reduction gained is close to the theoretical limit [Bosnacki et al. 2002]. These experiments also show that the combination of symmetry and partial order reduction can be effective. A prototype extension of SymmSpin for symmetry reduced model checking under weak fairness [Bosnacki 2003] has recently been developed. This is discussed in Section 4.6.2.

Other SPIN-based implementations An extension to SPIN is proposed [Derepas...
and Gastin 2001] to allow symmetry reduction of models of systems of replicated processes. The specification language PROMELA is augmented with two additional keywords, ref and public which identify reference variables and local variables with public scope respectively. Unlike scalar sets, these variables may hold the addresses of other processes for communication purposes or represent process ids. Orbit representatives are computed by a process called pseudo sorting in which the parts of the state-vector corresponding to the individual processes are sorted lexicographically. As the original state-vector ordering depends on the order in which variables are declared, the efficiency of the sorting algorithm depends on the initial declaration ordering. Only fully symmetric properties can be verified using this technique.

An on-the-fly state-space exploration algorithm exploiting both process and heap object symmetry has been implemented in the dSPIN model checking tool [Losif 2002] (see Section 2.4.4). For dynamic systems modelled using dSPIN, the number of state components may grow along an execution path. Therefore, rather than applying symmetry reduction with respect to a fixed permutation group, a family of groups is considered. A suitable group is selected at each execution step. Orbit representatives are calculated using a similar set of heuristics to those used by SymmSpin.

The SymmExtractor tool [Donaldson and Miller 2005] can be used to detect structural symmetries arising from the communication structure of a PROMELA model (see Section 4.3).

5.2 Symbolic methods

SMV As a symbolic model checker, SMV [McMillan 1993] does not lend itself to symmetry reduction of the state-space. This is because the symbolic representation of the orbit relation as a BDD is prohibitively large (see Section 4.4). However, symmetry reduction on the cases associated with a property to be proved for a system is achieved via the use of scalar sets [McMillan 2000]. In order to exploit abstraction techniques available with SMV, a method called temporal case splitting is used to break a given property down into a parameterised set of assertions. This addresses state explosion, but may result in an unwanted side-effect, namely case explosion. Declaring variables as scalar sets enables SMV to sort the assertions into equivalence classes. Specifically, if we have two assertions \(\phi_1 \) and \(\phi_2 \) where \(\phi_2 \) is obtained from \(\phi_1 \) by some permutation of scalar set values, then \(\phi_1 \) holds if and only if \(\phi_2 \) holds. Thus for a given parameterised set of assertions, it is only necessary to check a representative subset of assertions. This representative subset is chosen in such a way that every assertion in the original parameterised set can be mapped to a representative assertion via permutation of scalar set values.

SYMM One (purpose-built) symbolic model checker that exploits symmetry reduction methods for the verification of CTL specifications is SYMM [Clarke et al. 1998]. SYMM uses a simple input language based on a shared variable model of computation, and allows the user to give symmetries of the system to be verified.

To combat the orbit problem, symmetry reduction is implemented using the multiple orbit representatives approach (see Section 4.5.1). SYMM has been used to verify the IEEE Futurebus arbiter protocol [IEEE-896.1 1992] which controls a number of prioritised components competing for a resource. Each individual pro-
cess is described via a *module*. Modules with the same priority can be permuted.

Other symbolic implementations The RuleBase model checker [Beer et al. 1996] (see Section 2.4.2) has been experimentally extended with symmetry reduction techniques for *under-approximation* [Barner and Grumberg 2002]. Generators for a symmetry group of the verified system are supplied by the user. The generators which are genuine symmetries of the system, and under which the checked property is invariant, are retained by the model checker for exploitation during search. Orbit representatives are selected on-the-fly (see Section 4.5.4). Experimental results show that RuleBase performs significantly better for the checking of liveness properties when symmetry reduction is applied. However, no improvement in performance has been shown for safety properties.

An experimental model checking system, UTOOL [Emerson and Wahl 2005b], has been developed for the investigation of techniques to combine symmetry reduction with symbolic representation. This tool uses the input language of Muρ and performs symbolic verification, exploiting symmetry wherever possible. UTOOL avoids constructing the orbit relation through the use of generic representatives, or through dynamic representative computation (see Sections 4.5.2 and 4.5.3 respectively). Though less efficient, for the purposes of comparison, UTOOL also implements symmetry reduction using pre-computed multiple representatives (see Section 4.5.1).

5.3 Real-time methods

Uppaal The real time model checking tool, Uppaal, has been extended to exploit symmetry [Hendriks et al. 2003], using scalar sets [Ip and Dill 1996]. As the main purpose of Uppaal is to perform reachability analysis, symmetry reduction using scalar sets is an obvious choice—the original scalarset theory was developed in the context of reachability analysis rather than the checking of temporal logic properties. However, the soundness of symmetry reduction does not follow directly, since the Uppaal language is very different from that of Muρ. Hence soundness is proved separately for Uppaal.

The implementation of symmetry reduction in Uppaal involves the development of an efficient algorithm for the computation of a canonical representative for a state. This is particularly challenging since Uppaal represents sets of clock valuations symbolically using a difference bounded matrix (DBM).

The scalar sets for a given model define a set of *state swaps* for the model. Each state swap is an automorphism of the model, and the set of all state swaps can be used to compute a canonical state representative. In order to simplify the computation of representatives, two assumptions are made. The first is that an array indexed by scalar sets does not contain elements of scalar set type. The second is that a timed automaton in a Uppaal model may only reset its clock to the value zero. This assumption ensures that individual clocks can always be ordered using the order in which they were reset—this is called the *diagonal property* and leads to a total ordering on states. Note that the diagonal property is important as, for a given total ordering, minimisation using state swaps of a general DBM is at least as hard as testing isomorphism for strongly regular graphs [Hendriks et al. 2003].
A state is minimised using the state swaps defined by scalarsets in the model, together with this total ordering. This minimised state is a canonical representative for the original state.

Experimental results for Fischer’s mutual exclusion protocol, presented in some detail, show that exponential savings can be gained by exploiting symmetry. Further experiments for an audio/video protocol, and for a distributed agreement algorithm, are also encouraging. Since symmetry reduction in UPAAAL makes use of scalarsets, only total symmetries can be exploited.

RED Another (symbolic) real time model checker to support symmetry reduction is RED [Wang and Schmidt 2002]. The symmetry reduction algorithm uses relations between pointers to define an ordering among processes. This ordering is then used to compute a representative by sorting the associated orbits. Every permutation is constructed via successive composition of transpositions. This can lead to an over approximation of the reachable state-space (the “anomaly of image false reachability”). For this reason using RED with symmetry reduction is only useful for checking that a state is not reachable. The performance of RED (with symmetry reduction) is compared to that of Murphi [Dill et al. 1992] (with symmetry reduction) and SMC [Sistla et al. 2000] for three benchmark systems [Wang and Schmidt 2002]. Since it manages to successfully combine symbolic techniques with symmetry reduction, as the number of processes increases, RED dramatically outperforms the other model checkers.

5.4 Direct model checking

Bogor A symmetry reduction technique has been developed for the Bogor model checking framework [Robby et al. 2003], which is used to model check Java programs (see Section 2.4.4). The symmetry reduction methods used in Bogor [Robby et al. 2003] are based on those implemented in dSPIN [Iosif 2002] (see Section 5.1) but use more efficient heuristics [Iosif 2004] for state-vector sorting.

States contain both thread and heap information. These different parts of the state (the thread and the heap state) are sorted separately. Threads are sorted by comparing associated program counters. This does not always produce a unique ordering. However, heap states can be sorted in a canonical way. For every heap state s, there is an associated set of memory locations, $l_{1}, l_{2}, \ldots, l_{r}$, say. It is possible to sort the indices of the memory locations (for a given s) by ordering the *traces* associated with each pair (s, l_{i}, s), $1 \leq i \leq r$. The trace for pair (s, l_{i}, s) is the smallest of all of the incoming *chains* (pairs of thread identifiers and variable sequences) which can themselves be ordered in a natural way. The sorting of the location indices produces a strictly ordered list of integers. If G is a symmetry group acting on the heap elements, then the ordered list associated with state s is identical to the corresponding list for any s' in the same orbit of G as s. Thus the index sorting function is a canonicalisation function (see Section 4.5.6).

VeriSoft The VeriSoft model checker [Godefroid 1997] verifies C-code directly via a stateless search (see Section 2.4.4). As such, the symmetry reduction methods implemented in VeriSoft [Godefroid 1999] rely on equivalences between sequences of *transitions* rather than between states. If M is a transition system and M_{G} a
quotient transition system of \mathcal{M} with respect to equivalence of transition sequences, then \mathcal{M} and \mathcal{M}_G are bisimilar and satisfy the same (symmetric) temporal logic formulas.

In order for equivalent transitions to be identified, labels are added to transitions, so that the model is represented by a labelled transition system. Two transitions are equivalent with respect to a given symmetry group G if their respective labels are equivalent with respect to G. This concept can be easily extended to sequences of transitions. Symmetry reduction is used to prune transitions on-the-fly. If, for some $\alpha \in G$, transitions t and $\alpha(t)$ are enabled and α fixes s, then only one of t or $\alpha(t)$ need be explored. Given that s is not stored explicitly, it is not straightforward to check that α fixes s. However, assuming that α fixes the initial state s_0, if w is the sequence of transitions leading from s_0 to s, then it can be shown that $\alpha(s) = s$ if and only if w and $\alpha(w)$ are equivalent with respect to a partial ordering of transitions. Thus, by combining symmetry reduction with partial order reduction techniques (see Section 4.6.1) the problem of checking that $\alpha(s) = s$ is overcome.

Other direct model checking implementations A limited form of symmetry reduction is applied [Lerda and Visser 2001] within the second generation Java PathFinder tool (JPF2) [Visser et al. 2000] (see Section 2.4.4) which model checks Java bytecode directly. Like dSPIN, JPF2 is capable of handling dynamic structures (although, unlike dSPIN, data is not allocated dynamically). States are composed of a static area, a dynamic area and a thread area, each of which is represented as an array. Two states are considered to be equivalent if a permutation applied to the static and dynamic area arrays of the first state, gives the corresponding arrays of the second. A canonicalisation function (see Section 4.5.6) is used which imposes a simple ordering (calculated during model checking) on the static and dynamic areas of the states.

6. CONCLUSION

Model checking algorithms rely upon the construction of a model representing all system states. One of the major problems associated with model checking is state-space explosion. The main approaches to overcoming state-space explosion involve a reduction in state representation size (e.g., symbolic representations), or a reduction in the number of states or paths explored (e.g. on-the-fly methods, partial order reduction and symmetry reduction). Symmetry reduction involves avoiding areas of the state-space which are symmetrically equivalent to those already visited. In this paper we have given an overview of symmetry reduction, and how it relates to other reduction approaches.

The identification of symmetries involves finding symmetries of a model without building the model explicitly. Purpose built data types, such as scalarsets and circular sets, allow permutations to be identified which correspond to automorphisms. However, they can only be used for systems where subsets of processes behave identically, whereas many computer science applications naturally involve partial symmetries, in which individual processes are distinguished in some way. Recent results extend to partial symmetries, and automatic extraction of symmetry from
source programs, in certain cases.

The crux of exploiting symmetry is the \textit{orbit problem} – it must be solved efficiently, or avoided altogether. This makes symmetry reduction ineffective, in general, for symbolic model checking. As a result, its implementation within the most widely used symbolic model checker SMV is very limited. However, the use of multiple representatives, generic representatives, or dynamic representative computation, makes the combination of symmetry reduction and symbolic techniques theoretically possible. Symmetry is amenable to combination with partial order reduction and also to fairness when using automata theoretic approaches.

Most implementations of symmetry reduction using scalars sets are within the mainstream on-the-fly checkers such as Muro and SPIN, though scalars sets have also been added to the real-time model checking tool UPPAAL. Other techniques have been developed to implement symmetry within the specialist symbolic model checker RED and within model checkers that are used to verify C or Java code directly (e.g. VeriSoft, Bogor and Java PathFinder (JPF2)).

Open problems remain, including the development of improved techniques which deal with partial symmetries [Emerson 2000], identification of (full or partial) symmetries from Java and C source programs, and the identification and exploitation of symmetry in probabilistic model checking.

REFERENCES

ACM Journal Name, Vol. V, No. N, Month 20YY.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Holzmann, G. and Smith, M. 1999b. Software model checking - extracting verification models from source code. See Wu et al. [1999], 481–497.

Received Month Year; revised Month Year; accepted Month Year