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Abstract

The predictive pole-placement control method introduced in this paper embeds the classical pole-placement state feedback design into a
quadratic optimisation based model-predictive formulation. This provides an alternative to model-predictive controllers which are based
on linear-quadratic control. The theoretical properties of the controller in a linear continuous-time setting are presented and a number of
illustrative examples are given.

These results provide the foundation for novel linear and nonlinear constrained predictive control methods based on continuous-time
models.
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1 Introduction

Most work on stabilising Model-based Predictive Control
(MPC) can be seen as the approximation of infinite hori-
zon linear quadratic control using a finite horizon optimisa-
tion with constraints. Stability results – for example those
of Clarke and Scattolini (1991), Demircioglu and Clarke
(1992), Muske and Rawlings (1993), Rawlings and Muske
(1993), Chen and Allgöwer (1998) and Mayne, Rawlings,
Rao, and Scokaert (2000) – are based on the idea of showing
that, with suitable terminal constraints, this approximation
is equivalent to the solution of a related infinite horizon cost
function.

This paper takes a different approach. Although optimisa-
tion via model-based prediction is used, it isnot as an ap-
proximation to a linear-quadratic cost function but ratheras
a means of solving linear constrained problems by approx-
imating the behaviour of the classical linear state feedback
control of a linear system with chosen closed-loop pole loca-
tions. These pole locations can be determined by any linear
design method (including linear-quadratic). For this reason,
the algorithm is namedPredictive Pole Placement(PPP).
In common with many other MPC papers such as those of
Muske and Rawlings (1993), Rawlings and Muske (1993),
Gawthrop, Demircioglu, and Siller-Alcala (1998) and Chen
and Allgöwer (1998), a state (as opposed to output) feed-
back approach is used; thus the method can be categorised as
manipulating input-output behaviour using state feedback.

In the linear context of this paper, output feedback may be
readily accomplished using standard observer techniques.

Within a continuous-time setting, the basic PPP algorithm
for a linear unconstrained system has the following features:

(1) The open-loop control signal (within the moving hori-
zon) is constrained to be the linear sum of prespecified
basis functions.

(2) Optimisation is used to minimise the open-loop output
response error with respect to a constant setpoint over
a finite time at the end of the optimisation horizon.
This can be viewed as forcing the response to become
nearly constant at the end of the optimisation horizon.

(3) A particular choice of basis functions, corresponding
to the transient response of a stable linear dynamic
system, leads to approximately equal open-loop (within
the moving horizon) and closed-loop responses both
corresponding to the regulator and tracking response
of a stable closed-loop system with prespecified stable
poles.

Feature 1 is not new: it is used by Richalet, Rault, Testud, and
J.Papon (1978) and Richalet (1993); the usual discrete-time
choice of the control (or control move) at each sample time
can be viewed as one such choice (Rawlings and Muske,
1993); a polynomial (in time) set of basis functions has
been used in the continuous context by Demircioglu and
Gawthrop (1991) and Gawthrop et al. (1998) and Laguerre
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functions have been used by Wang (2000).

Feature 2 can be viewed as an output-orientated version
of the terminal state constraint shown to be important for
stability in a number of papers, including those of Clarke and
Scattolini (1991), Demircioglu and Clarke (1992), Muske
and Rawlings (1993), Rawlings and Muske (1993) and Chen
and Allgöwer (1998); we believe that this output-orientated
approach is appropriate given the input-output focus of the
paper. Not surprisingly, it is likewise important in creating
a stable moving-horizon controller.

Scokaert and Rawlings (1998) show that (discrete-time)
“Constrained Linear Quadratic Regulation” has the prop-
erty that nominal closed-loop performance is identical to
the open-loop predictions and thus shares feature 3 with the
(continuous-time) PPP algorithm. One contribution of our
paper is to prove feature 3 for the PPP algorithm.

Of course, standard techniques are available to design con-
trollers for the linear unconstrained case and, in this case,
the PPP algorithm would be yet another way of achieving
the same result. However, the strength of the method is in its
extension to constrained systems using theQuadratic Pro-
gramming(QP) approach to optimisation (Fletcher, 1987);
the linear unconstrained case representing an ideal situa-
tion with the corresponding nice properties listed above. Al-
though outside the scope of this paper, we note that the
method extends in principle to the nonlinear case and some
preliminary results are available elsewhere (Gawthrop and
Ronco, 2000).

Although much of the MPC literature uses a discrete-time
formulation, this paper uses a continuous time formula-
tion and thus builds on previous work of Demircioglu and
Gawthrop (1991), Demircioglu and Clarke (1992), Demir-
cioglu and Gawthrop (1992) and Gawthrop et al. (1998).

The paper is organised as follows. Section 2 considers the
unconstrained optimisation problem and provides an explicit
solution of the open and closed-loop controllers. Section 3
gives conditions under which open and closed loop control
are the same and shows that the PPP algorithm approximates
this situation. Section 4 gives a selection of illustrativeex-
amples and Section 5 concludes the paper.

2 Unconstrained PPP

This section introduces the class of systems considered in
this paper, the corresponding unconstrained optimisation
problem and gives an explicit formula for its solution. Some
special cases of the input and set-point basis functions are
considered in Sections 2.1 and 2.2.

The linear systems considered in this paper are described by:

��
�
��� � ��� 	 
� ��� � �  ���� ��� 	 � � ���� ��� 	 �� (1)

where� � ��� , � � ��� and
 � ��� . �� is the system

initial condition. Given the state� ��� at time
�
, we are inter-

ested in the evolution of themoving horizonstate�� �� � � �
and output� � �� � � � � where

��
�
��� �� �� � � � 	 
�� �� � � � � � � �� � � �� � �� � � � 	 � �� �� � � ��� �� � �� 	 ��� (2)

The differential equations 1 and 2 are related by having
the samestate space matrices and by imposing thecross-
couplingconditions:

���� 	 � ��� ��� 	 � �� � �� (3)

In this paper, themoving horizoncontrol signal
� �� � � � is

linearly parameterisedby the�� components of the column
vector ��� so that:

� �� � � � 	  � �� � ��� (4)

where � �� � is a �! " �� matrix of functions of
�
. The

components of � �� � can be regarded as a set ofbasis
functionsfor the control signal

� �� � � � and the components
of  ��� the corresponding weights. A particular choice of
such functions is given in Table 1.

Because (4) generates the moving-horizon control
� �� � � �

with no feedback from�� �� � � �, it will be referred to as an
open-loopcontrol in the sequel.

# $ %& '()
Laplace transform

1 * +,
2 -./0 1 +,2/0
3 -./0 1 345 6 (& ,2/07,2/0 89 2: 90
4 -./0 1 5;< 6 (& : 07,2/0 89 2: 90
5 =>?@7A.+8B -./0 1 +7,2/0 8>
6 Laguerre

%C D E D F ' GHI 7,./ 8J ?@7,2/ 8JTable 1
Some Basis Functions

Similarly, themoving horizonsetpointK � �� � � � is linearly
parameterised by the�L components of the column vector

+ More generally,M $ %C D & ' can be regarded as a vector ofper-
formance variables
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� ��� so that:

K � �� � � � 	 � � �� �� ��� (5)

where
� � �� � is a� � " �L matrix of functions of

�
. Typi-

cally the components
� �� �� � of

� � �� � will be constant:

� �� �� � 	 ��
for tracking� for regulation

(6)

but they could also be the more general functions appearing
in Table 1.

In a similar fashion to (3) the actual setpointK ��� is the
value of themoving horizonsetpoint at

� 	 �:
K ��� 	 K � �� � �� (7)

The vector ��� is to be chosen to minimise (at a given time�
) the (unconstrained) quadratic cost function:

� � ��� � � ��� �� ���� 	 �
�
� �9�@

�� � �� � � � � K � �� � � ���
	 �� � �� � �� � � � � K � �� � � ��
� (8)

where
	 �� � is an� � "� � positive-definite output weighting

matrix which is possibly a function of
�
. To streamline the

notation:
� � ��� � � ��� �� ���� will be written as

�
in the

sequel.

The derivatives of this cost function are denoted by
�� 	��� �

,
�� � 	 � 9�� 9 � ,

�� � 	 � 9�� � �
and

��L 	 � 9�� �L �
.

However, these subscripts donot imply derivatives when
attached to other symbols apart from

�
.

With this notation, Lemma 1 gives the solution of this opti-
misation problem.

Lemma 1 (Explicit solution of unconstrained problem)
When the system (within the moving horizon) is given by (2),
the cost function

�
has a global minimum with respect to ��� if

�� � is not singular. The corresponding minimising ��� is then given by:

 ��� 	 ��� ��� � ��� ��� (9)

where
�� 	 � ��� � ��L � �� 	 � ��� � �� � (10)

and
�� � 	 � �9�@

� �� �� �� 	 �� �� �� �� �
� (11)

�� � 	 � �9�@
� �� �� �� 	 �� �� �� �� �
� (12)

��L 	 � �9�@
� �� �� �� 	 �� �� � �� �
� (13)

where the�th column� �� � �� � of � �� �� � is the solution of the
ODE:

��
�
��� ��� � �� � 	 
��� � �� � � �  �� �� �� �� � �� � 	 � ��� � �� ���� � ��� 	 ���

(14)

where ��� is a column vector with all of its�� elements
zero and �� �� � is the�! " �

vector forming the�th column
of the matrix � �� �.
� �� �� � is the solution of:

��
�
��� ��� �� � 	 
��� �� �� �� �� � 	 � ��� �� ���� ��� 	 ���

(15)

where
��� is a column vector with all of its�� elements

unity.

The closed loop control is given by

 ��� 	 ��K ��� � ��� ��� (16)
where

�� 	  � ����� and
�� 	  � �����

(17)

andK ��� is given by (7).

PROOF. As the system of (2) is linear, the solution can be
rewritten as:

� � �� � � � 	 � �� �� � ��� � ��� �� �� ��� (18)

Differentiating the cost function
�

( (8)) with respect to ���, �� � � then gives

�� 	 � �9�@

� � �� � � �
 

� 	 �� � �� � �� � � � � K � �� � � �� 
�
	 � �9�@

� �� �� �� 	 �� �
�� �� �� � ��� � � �� �� �� ��� � � � �� �� ���� 
� (19)

Differentiating (19) again with respect to ��� gives (11)–
(13). Reorganising these equations and setting

�� 	 � gives
(9).

From (11),
�� � is a quadratic form and thus non-negative;

linking this to the assumption of this lemma that
�� � is

non-singular, it follows that
�� � is positive definite. From

(18), the cost
�

is quadratic in ��� and so has a unique
global minimum as

�� � is positive-definite. Equation (16)
follows from (9), (4) and (3).
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Remark 1 Equation (9), together with (4), gives theopen-
loop control signalas a function of

�
, the initial state� ���

and the setpoint at time
�

and the basis functions � �� � as:

� �� � � � 	  � �� ���� ��� �  � �� ���� ��� (20)

Remark 2 The open-loop control signal has two indepen-
dent terms: atracking term  � �� ���� ��� driven by the
setpoint and aregulationterm

� � �� ���� ��� driven by the
initial state � ���.
Remark 3 Equation (15) has the explicit solution:

��� �� � 	 � ��� 
� ��� (21)

2.1 Special forms of � �� �
It is convenient to choose the following special form of � �� �:

 � �� � 	 blockdiag
� �� �� ��  �� �� �� � � � ��� �� �� �

(22)

Where �� �� � � ��0 (the set of functions defining the�th
system input) is generated as the state of the autonomous
system:

� ���  �� �� � 	 
 � �� �� � �� ��� 	  �� � (23)

Note that (23) has the explicit solution:

 �� �� � 	 ��� 
 ��  �� � (24)

In this particular case the open-loop control
� �� � � � of (4)

can be rearranged as:

� �� � � � 	  � �� � ��� 	 � ��� � � �� � (25)

where� ��� 	 blockdiag
� � ����  � ���� � � �  �� ���� � (26)� � �� � 	 � �� �� ��  �� �� �� � � �  ��� �� �� �� (27)

 ��� 	 � � ����  � ���� � � �  �� ���� �� (28)

In the single input case (�! 	 �
):� ��� 	  � ��� and
� � �� � 	  � � �� � (29)

In the multi-input case, the�th control signal
 � ��� is given

by
 � ��� 	  �� �� ��  � ���. The motivation for the special

form of  � �� � of (22) is the two alternative ways of writing� �� � � � displayed in (25). The first form is that used for
optimisation in Section 2, the second form is used in the
analysis of Section 3.

It is convenient to rewrite the�! sets of equations 23 in
more compact form as:

� ��� � � �� � 	 �
! � � �� �� � ��� 	 � �� (30)

where
�
! is the block-diagonal matrix�
! 	 blockdiag

�
 � 
 � � � � 
�� � (31)

and the initial condition
� �� is given by:� �� 	 � �� ��  �� �� � � �  ��� �� �� (32)

Equations (30)–(32) can be explicitly solved to give� � �� � 	 ��� �
! � � �� (33)

� � �� � � � 	 �� �� ��� �
 � � ���
� �
! 	 � ��� �� � ��� � ��� 	 (34)

where
�
! is the matrix with the�! matrices


 � on the
diagonal and zero elsewhere.

In a similar fashion, and differentiating (25) with respectto� ��� and setting�� �� � �� 	 � ��� 	 � gives:

� �� �� � 	 �� �� ��� �
 �
� �
!	 � � �� � ���	 (35)

Equation (35) is useful for computing� �� �� � needed in (11)–
(13).

Computation is further simplified in the case where each
input has the same set of basis functions – generated by the
same transition matrix


! and initial condition
� �� . In this

case,
� ��� and

� � �� � can be redefined as (36) and (37):� ��� 	 � � ���  � ��� � � �  �� ����� (36)� ��� � � �� � 	 
! � � �� �� � ��� 	 � �� (37)

Equations (36) and (37) are analysed in Section 3.
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2.2 Special form of
� � �� �

A constant setpoint is implied by the setpoint generating
function

� � �� � given by:

� � �� � 	 ��� ��� (the�� " �� unit matrix) (38)

and
� ��� 	 �

a constant.

Using (5) and (7), the moving-horizon setpointK � �� � � � and
the actual setpointK ��� become identical, constant vectors:

K ��� 	 K � �� � � � 	 �
(39)

Using (1), (16) and (39), the closed loop system can be
written as the autonomous system

��
�
���� ��� 	 
 �� ��� ��� 	 � � ���
� ��� 	 � � (40)

where


 � 	 �
 � � �� � ���
� � 	 (41)

� ��� 	 �� ���� ��� � � � 	 ���� ��� (42)

� 	 ���� ��� � (43)

Equation (40) is useful for the analysis of Section 3.

3 Properties of Unconstrained PPP

This section looks at the basic properties of the PPP algo-
rithm and gives the fundamental result on the relationship
between theopen-loop control

� �� � � � and theclosed-loop
control

 ���.
Lemma 1 presents a general algorithm parameterised by
the choice of input functions � �� � and setpoint functions� � �� �. A key idea in this paper is to choose the input func-
tions � �� � (rewritten as

� � �� � in (37) to be the solutions of
the autonomous system of (37). Some appropriate functions
appear in Table 1. It turns out that a suitable combination
of such functions yields an open-loop system that has the
same input, state and output as the corresponding closed-
loop system. This relationship between open and closed loop
systems is given in the following lemma:

Lemma 2 (Open and closed-loop response) The moving-
horizon control signal of (4) is applied to the system of (2)
and the closed-loop controller of the form of (16) is applied
to the system of (1).

If

(1)
� ��� is given by (36)

(2)
� � �� � is generated from (37).

(3) �
! � �� � is controllable.
(4) K � �� � � � is given by (39).
(5) The basis-function generating matrix


! appearing in
(37) has the same�� eigenvalues as the matrix


 �
of

(41) appearing in (40).

Then there exists auniquecontrol vector �� � ��� of the form
of (28) and given by:

 �� � ��� 	 	 � ��� (44)

such that the solution of the open loop system 2 is the same
as the solution of the the closed loop system 1 in the sense
that:

 �� � � � 	 � �� � � � (45)� �� � � � 	 �� �� � � � (46)� �� � � � 	 �� �� � � � (47)

PROOF. For compatibility with the open-loop setup, the
evolution of the closed-loop system starting at time

�
and

parameterised by
�

is considered. Assumption 4 means that
the setpoint can be incorporated into the closed-loop system
as in (40).

The closed-loop system input
 ��� is written as the output of

the dynamic system (48) with scalar input
 �� � by rewriting
(40) as

� ��� � �� � � � 	 
 �� �� � � � � � � 
 �� � �� � � � 	 ��� �� � � � (48)

where
� is given by (43) and
 �� � is the Dirac delta func-

tion
�

.

On the other hand, using (25), the open-loop system can also
be written as the output of another dynamic system 49 with
output

� �� � � � and thesamescalar input
 �� �:
� ��� � � �� � 	 
! � � �� � � � �� 
 �� �� �� � � � 	 � ��� � � �� � (49)

The key to this proof is to note that (48) and 49 are are lin-
ear state space systems which are invariant with respect to
time

�
which can be written as the triples�
 � � � ��� � �� �

and�
 ! � � �� � � ���� respectively. In particular, when the out-
put equations are discarded, they can be written as the pairs�
 � � � ���� and �
 ! �  � ���� respectively. Standard system-
theoretic results (see, for example the books of Kailath
(1980) and Polderman and Willems (1997)) are then used

�
This � function has the effect of giving the system 48 the initial

value of� at
& � �
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to deduce that thepairs are similar and the corresponding
transformation matrix� is found. The triples are thencon-
structedto be similar by choosing

� ��� in terms of� ��� and
� . Because the inputs to the two systems of (48) and (49)
are identical (
 �� �), it then follows that the outputs are also
identical:

� �� � � � 	  �� � � �
.

Finally, continuity arguments are used to remove one of the
controllability assumptions needed for similarity but notfor
this Lemma.

To aid in the understanding of the proof, it is firstly stated
for the single-state (�� 	 �

) case with zero setpoint and
then for the general case.

Scalar case:�� 	 �
Initially, assume that� ��� �	 � and define thetransformation
scalar by

� 	 � ���� �� (50)

It then follows from Condition 5 and by comparing (48) and
49 that: � � �� � 	 � ��� �� � � �

(51)

By choosing
� ��� 	 ���� , it follows that

���� �� � � � 	� ��� � � �� � and thus that
� �� � � � 	  �� � � �

. In particular,
it is possible to write:� ��� 	 	 �� ��� where

	 � 	 ��� �� (52)

Equation (51) only makes sense if� is invertible, i.e., it
needs the extra assumption� ��� �	 �. However, (52) gives	 � smoothly in terms of� ���. Hence, when� ��� 	 �, it
can be replaced by� ��� 	 �

and then (52) interpreted as the
limit as

� � �.
Single input�! 	 �

case

In addition to assumption 3, initially assume that

�
 � �� ���� is controllable (53)

(this assumption will be removed later). Using standard
system-theoretic results (see, for example the book of
Kailath (1980)) and equating�
 � � � � � with �
 � � � ���� and�
 � � � � � with �
 ! �  � ���� that a transformation matrix�
exists (and is given by (54)) so that�
 � � � � � and �
 � � � ����
are similar.

�� � 	 � � (54)

where � � and � � are thecontrollability matricesof the
single-input systems 48 and 49 respectively and given by
the usual partitioned matrices:

� � 	 �� ��� 
 �� ��� � � � 
����� � ���� (55)

� � 	 � � �� 
! � �� � � � 
����! � �� � (56)

It is now possible tochoose
� ��� as in (57)� ��� 	 �� � (57)

which implies that the triples �
 � � � ��� � �� � and�
! � � �� � � ���� are also similar; it follows from standard
system-theoretic results (see, for example the books of
Kailath (1980) and Polderman and Willems (1997))

� �� � � � 	  �� � � �
(58)

Furthermore, it is now shown that� is linear in � ���. In
particular defining� � 	 ��� 0 where� � is the �th component

of � ��� and defining�	� as the�th column of

 	� , it follows

that:

� � 	 �
� �� � �� � � � ��� ��� � ���� (59)

This is independent of� ��� for all � and thus� is linear in� ���. Thus:

� 	 �
�
�� � � �� � ��� (60)

where� � ��� is the �th component of� ���. Using (57), it
follows that:� ��� 	 �� � 	 � �
�

�� �
� � �� � ���

	 � �
�
�� � � � ���� � � 	 �� ���� 	 � (61)

where
	 is defined as

	 	 ��� �� � � ���� � (62)

and the row vectors � (
� is a row vector when�! 	 �

)
are given by:

 � 	 � � � (63)

In this scalar case, (29) may be used to deduce ��� to give:

 ��� 	 �	 � ��� (64)
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Removing the extra controllability condition

From (54), condition 3 is clearly necessary for the existence
of � and hence

	 . However, although the additional con-
dition of (53) that�
 � �� ���� is controllable is required for
similarity (which requires that� is invertible), this section
shows that it is not required here.

Firstly, note that (64) islinear in � ��� and therefore the
function mapping� ��� to  ��� is continuousand therefore
well behaved even when�
 � �� ���� is not controllable.

Secondly note that controllability is generic in that�
 � �� ���� is controllable for almost all�
 � �� ����.
Thus, for those times when�
 � �� ���� is not controllable,
(64) holds for acontrollablesystem in the neighbourhood
of �
 � �� ���� and then, due to the continuity of the function
mapping� ��� to  ���, (64) holds everywhere.

General case

In the general case, the previous arguments can be applied
to the� th input and thus (64) is replaced by

 � ��� 	 	 �� ��� (65)

where
	 � is given by (59)– (62) and (63) is replaced by

 � 	 � � � � (66)

where
� � is the� th row of

� .

Noting from (28) that ��� comprises the�! vectors � ���
stacked into a single column and defining

	 to be the�� �! " � matrix comprising the�! matrices
	 � stacked

vertically

	 � 	 �	 �� 	 �� � � � 	 ��
 � (67)

it follows that (64) is also true for multiple-input systems.
Thus (44) is proved. As

	 � ( (67)) is unique, it follows that �� � ��� in (44) is unique.

This proves (45). (46) and (47) follow by observing that
as the inputs to the systems 1 and 2 are the same equation
(58) and, from the condition contained in (3), the initial
conditions are also the same, similarity implies that the states
and outputs must also be the same.

Remark 4 Partitioning the matrix
	 � as

	 	 ��	 � 	L �
where

	 � is �� " �� and
	 � is �� " �

, (64) can be
rewritten as:

 ��� 	 �	 �� ��� � 	L (68)

Remark 5 The matrix
	 depends, via� � and


 �
, on the

closed-loop gain matrix
� . If the pair �
 � � � is controllable

and�! 	 �
there is onlyone

� corresponding to a given
set of closed-loop poles (eigenvalues of


 �
); however there

are, in general, many possible values of
� (Kailath, 1980).

Therefore (except in the special case) Lemma 2 doesnot
imply a unique

	 for a given set of closed-loop poles
implied by


! .
Remark 6 This result is independent of the optimisation
based design of Lemma 1.

Remark 7 (67) gives an explicit expression for
	 .

Remark 8 To satisfy conditions 4 and 5, it is necessary that
! has at least one eigenvalue at zero – corresponding to
the constant setpoint.

Lemma 2 paves the way for showing the properties of the
algorithm contained in the following Theorem.

Theorem 1 (Linear behaviour) If

(1) The pair �
� � is controllable.
(2) The assumptions of Lemma 2 hold.
(3) The matrix


! is chosen such that�
 ! �
� is negative
definite.

(4) The upper horizon
�� is given by

�� 	 �� � � �
where� � � �,

then in the limit as
�� � �

(1) The solution of the open loop system (2) and (4) is the
same as the solution of the the closed loop system (1)

(2) The closed-loop system poles (eigenvalues of

 � 	
 � � ��) are the�� eigenvalues of


! .
(3)

�� 	 	 �

PROOF. The general solution of themoving-horizonsys-
tem of (2) with input given by (4) and the cross-coupling
conditions of (3) is given by:

��� �� � � � 	 �� � � ��� � � �� �� �� �� 	
 � �� �
� � ���� � �� � � � 	 � �� �� � � �
(69)

The result of Lemma 2 is that there exist a value of ���, �� � ���, such that the solution of the open-loopmoving-
horizonsystem of (2) only contains terms in

��� � , that is
no terms in

�� �
. Define

� ��� as the difference between an
arbitrary ��� and the value resulting from Lemma 2, (44):

� ��� 	  ��� �  �� � ��� (70)
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It follows that (69) can be rewritten as:��� �� � � � 	 ��� � � ��� � � �� �� �� �� 	 
 � �� �
� �� ���� � �� � � � 	 � �� �� � � �
(71)

Invoking Assumption 3, it follows that, as
�

increases, the
convolution integral multiplying

� ��� will be large com-
pared to the factor

��� � multiplying � ���. Hence, in the limit
as

� � � �
, the optimal choice of ��� is that which sets� ��� 	 �, that is ��� 	  �� � ���. The result then follows

from Lemma 2.

Remark 9 Choosing this particular horizon to weight the
output is similar to the standard approach of using terminal
state weighting.

Remark 10 Although the proof is stated for the asymptotic
case, in practical terms

�� should be chosen to be somewhat
greater than the slowest time-constant of the desired closed-
loop system – typically by a factor of 5. A detailed discussion
of this is given by Gawthrop (2000).

Remark 11 This result can be extended in a number of
ways.

(1) If condition 3 is reversed (

 � 
! � �) then there is

no feedback
�� 	 �.

(2) If  � �� � contains more elements than necessary (that
is the dimension of


! is greater than that of



), the
elements with theslowesttime constants are discarded.

4 Examples

This section provides a number of illustrative examples of
the main features of the PPP algorithm. Each example is
chosen to illustrate a particular aspect of PPP as follows:

Example 4.1 uses a simple example to allow hand calcula-
tion of the PPP algorithm

Example 4.2 Shows that PPP successfully controls a third
order, unstable system with unstable inverse. The fact that
PPP gives approximate pole-placement for finite horizon
prediction is emphasised.

Example 4.3 illustrates PPP applied to a system with more
outputs than inputs (� � � �!).

Example 4.4 illustrates the behaviour of PPP acting on
a square multi-input, multi-output system in a situation
where the conditions of Lemma 2 arenot satisfied.

4.1 Simple worked example

This example is simple enough for the calculations to be
performed by hand and therefore simply illustrates the main
results. A simple integrator with gain� is described by


 	 � � � 	 � � � 	 �
(72)

Consider the regulation problem where the basis function is � �� � 	 ����
, that is:


! 	 �� (73)

that is the moving horizon control signal
� �� � � � of (4)

becomes:

� �� � � � 	  � �� � ��� 	 ����  ��� (74)

where ��� is a real number in this case. Equation (2) then
becomes:

� ��� �� �� � � � 	 ���� �� � � � � �����  ���� � �� � � � 	 �� �� � � � (75)

where all quantities are scalars. The solution to (75) is:

� � �� � � � 	 �� �� � �� � �
�

�� � ���� �  ��� (76)

	 � ��� � �
�

�� � ���� �  ��� (77)

where the second equality follows form (3). By direct dif-
ferentiation, the derivatives of� � �� � � � with respect to ���
and� ��� respectively are:

� �� �� � 	 �
�

�� � ���� �
(78)� �� �� � 	 �
(79)

Substituting� �� �� � and��� �� � into (11) and 12 gives:

�� � 	 � �9�@
� �� �� �� 	 �� �� �� �� �
�

	 � �
� �

� � �9�@
�� � ���� �� 
�

	 � �
� �

� � �9�@
� � ����� � ����� 
�

	 � �
� �

�
���� � � � � � � �

� �����9 � ����@ �
� �

�� ���
���9 � �����@ �� (80)

and

�� � 	 � �9�@
� �� �� �� 	 �� �� �� �� �
�

	 � �
� � � �9�@

�� � ���� � 
�
	 � �

� � ���� � � � � � �
� �����9 � ����@ �� (81)
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Fig. 1. Unstable system: open and closed-loop outputs

As in Theorem 1, let
�� 	 �� � � �

. Then it follows that:

����@��
�� � 	 � �

� �
�
� �

(82)

����@��
�� � 	 � �

� � � �
(83)

����@��
�� 	 � ��� � �� � 	 �� (84)

����@��
�� 	  � ����� 	 �� (85)

where (84) follows from (10) and (85) follows from (17)
noting that � ��� 	 ���� 	 �

in this case.

The corresponding closed-loop system matrix is


 � 	 
 � � �� 	 � � � �� 	 �� (86)

giving a single closed-loop pole at� 	 � – that is the closed
loop pole is the same as that implied by (73). This verifies
Theorem 1.

Substituting (85) into (76) gives:

�� �� � � � 	 � ��� � �
�

�� � ���� � �� � ���	 ���� � ��� (87)

As implied by Lemma 2, (87) shows that the open-loop
response of� � �� � � � is the same as the closed-loop response
of � ���.
It is also worth mentioning that Lemma 2 is explicitly proved
for this scalar (�� 	 �

) case in Section 3.

4.2 Unconstrained control – effect of
��

. A third order unstable system with unstable inverse is

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Time (sec)

Fig. 2. Unstable system: basis functions

described by the transfer function

� ��� 	
� � � ����� � ��� (88)

A state-space representation is:


 	
	


�

� �� �
� � �
� � �


��� �� 	

	


�

�
�
�


��� � � 	 �� �� �� �� (89)

The controller is designed with constant setpoint
� � �� � 	 �

and to have three closed loop poles at� 	 ��
. An appro-

priate

! matrix is:


! 	
	





�

�� � � ��� �� � ��� �� �� �
� � � �


������

(90)

In (90), the matrix

! has two parts:

(1) the upper left
� " �

matrix which generates the first
three Laguerre functions corresponding to entry 6 of
Table 1 with� 	 �

. These basis functions appear in
Figure 2.

(2) The lower right zero entry corresponding to the con-
stant setpoint referred to in Remark 8.

The time horizon is specified by
�� 	 � � �� 	 �

. Note that�� 	 ��� where
�� is the desired time-constant of� ��. This

is in line with Remark 10. The corresponding open (dashed)
and closed-loop (firm) step responses appear in Figure 1.
The difference between these is due to

�� being such that
the basis functions � �� � of Figure 2 still have significant
value at

� 	 ��.
Remark 12 This example emphasises the point that the
open and closed loop responses are (theoretically) identical
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Fig. 4. A one input two output system: fast response

precisely because the open-loop PPP controller removes the
free response of the system. In this case, the free response
of the system isunstableand clearly does not appear in the
figure. In other words, Lemma 2 shows that such an open-
loop control is always possible; Theorem 1 shows that this
is what PPP achieves and this example illustrates the result.

4.3 A one input two output system

This example illustrates PPP applied to a system with more
outputs than inputs (� � � �! ). The system:


 	
	





�

� � � ��� � � �
� � � �
� � �� �


������
� � 	

	





�

��
�
�


������
� � 	 �� � � �

� � � �	
(91)

has a two-output, one input transfer function

�
�� ��� � �� ��� � �

� 	 (92)
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Fig. 5. Simple multivariable system: the two system outputs

has been used by Middleton, Ward, Freudenberg, and
Woodyatt (1999) to illustrate performance limitations in
resonant systems.

The 5 basis functions are generated using the

! of (93).


! 	
	







�

�� � � � ���� �� � � ���� ��� �� � ���� ��� ��� �� �
� � � � �


��������

(93)

In (93), the matrix

! has two parts:

(1) the upper left
� "� matrix which generates the first four

Laguerre functions corresponding to entry 6 of Table 1
(2) The lower right zero entry corresponding to the con-

stant setpoint referred to in Remark 8.

Figures 3 and 4 show step responses when� 	 �
and� 	� ��

, respectively.

4.4 Simple multivariable system

This example illustrates the behaviour of PPP acting on a
square multi-input, multi-output system in a situation where
the conditions of Lemma 2 arenot satisfied.

A second-order, two-input, two-output system is described
by the state-matrices:


 	 ��� ��
� � 	 �� 	 �� �

� �	 �� 	 �� �
� �	 (94)

This corresponds to the transfer-function matrix:

� ��� 	
�

�� � ��� � � �� � �
�� � � �� � �	 (95)
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The controller is designed with constant setpoint
� 	�� ��� and


! is chosen to be


! 	 ��� �
� �	 (96)

In (96), the matrix

! has two parts:

(1) the upper left
� " �

matrix which generates the a single
decaying exponential corresponding to� � 	 �

in entry
2 of Table 1

(2) The lower right zero entry corresponding to the con-
stant setpoint referred to in Remark 8.

This choice of

! doesnot correspond to the conditions of

Lemma 2 as

! has smaller dimension than


 �
. The time

horizon is specified by:
�� 	 � � �� 	 �

. The corresponding
closed-loop system outputs appear in Figure 5. The upper
pair line (represented by points) corresponds to the second
output (with setpoint 2); the lower firm line corresponds to
the first output (with setpoint 1). The corresponding open-
loop response is identical.

The computed value of
�� is

� 	
	





�

� ��� �� ��� � ���
� ��� � ��� �� ���
� ��� � ��� �� ���
� ��� � ��� � ���


������

(97)

and the resultant closed-loop system matrix is


 � 	 ��� ��� �� �� �
� �� � �� ���	 (98)

which corresponds to two closed-loop poles at� 	 �� �� �.
Thus, in this case, thesinglepole defined by


! translates
into two closed-loop poles at the same location. Although
the conditions of Lemma 2 are not satisfied, the resultant
closed-loop has the specified poles.

5 Conclusion

A new MPC algorithm, predictive pole-placement, has been
shown to have a number of useful features as listed in the in-
troduction and these features have been theoretically proved
and illustrated by the examples of Section 4.

A popular approach to non-linear control design is theexact
linearisation approach of Isidori (1995). This has the dis-
advantage of cancelling zero dynamics and, in this sense,

may be regarded as the nonlinear equivalent of linear design
methods such as the minimum variance control ofÅström
(1970) and the generalised minimum variance control of
Clarke and Gawthrop (1975) which cancel system zeros to
achieve a close-loop system with prescribed poles and zeros.
In the linear case, thepole-placementapproach gives a class
of algorithms which avoid such cancellation by prescribing
closed-loop poles (but not zeros). As yet, there is no non-
linear equivalent of such an approach; one reason being that
it is impossible to achieve a linear closed-loop system with
prescribed poles without zero cancellation. In this sense,the
optimisation-based method presented in this paper provides
one possible approach to non-linear pole-placement. Initial
results (Gawthrop and Ronco, 2000) have shown that the
method can indeed be extended to nonlinear systems; and
future work will build on the work presented here to further
develop the PPP approach to nonlinear control.
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