examined devices submitted to HBM pulses, with a 10 ns rise time and a 150 ns time constant. These pulses are applied on the collector of the simulated devices, while their emitter and substrate are grounded. The thermal boundary condition is considered to be a constant temperature of 300 K at the bottom of the simulation domain which corresponds to the substrate electrode.

Fig. 2 shows the calculated transient voltage responses of the two transistors submitted to a low stress level (peak current \(I_p = 8 \text{mA/\mu m} \)) and to a high stress level (\(I_p = 15 \text{mA/\mu m} \)). This figure shows that initially the voltage across the device increases up to the triggering level (points A and A', Fig. 2). The simulated values of the triggering voltage of the two devices are in good agreement with the experimentally measured values (Table 1). In fact, the triggering voltages under transient conditions are lower than under static conditions owing to capacitive effects and the existence of displacements currents. Accordingly, the devices enter in snap-back and the voltage decreases up to the sustaining level (points B and B', Fig. 2). When this occurs, the greatest part of the discharge current flows laterally from the collector to the emitter under the field oxide (PBI, see Fig. 1a), while the conductivity of the base region is significantly modulated [6], which leads to a decrease in the resistance of the discharge path. However, the applied current still increases, since its maximum value is attained at 10 ns (points C and C', Fig. 2), also causing the terminal voltage to increase. Subsequently, the current decays exponentially and when it reaches the value for which the snap-back condition is not satisfied anymore, the terminal voltage goes back to the triggering voltage of the device (points E and E', Fig. 2).

Fig. 2 also shows that at high stress level the terminal voltage of the CPW device increases after the current has reached each peak value, and that it decreases in the case of the ODPW device (points D and D', Fig. 2). This is a thermal effect and can be attributed to the decrease of the mobility as well as to the increase of the avalanche voltage at high temperatures. The calculated maximum temperature transients for the different stress levels of the examined devices (Fig. 3) show that at high stress level the maximum temperature in the CPW device is considerably higher than in the ODPW device. This fact is probably the cause of the observed different failure levels of the tested transistors.

The increase in the lattice temperature is proportional to the product of the electric field by the current density. The electric field is lower in the ODPW device owing to the lower sustaining voltage in comparison with the CPW device. Conversely, Fig. 4 shows that, in the case of the ODPW device, the current density under the field oxide, when the discharge current reaches its peak value (i.e. 15 mA/\mu m), is lower and spreads deeper in the base region, than in the case of the CPW device. This effect can be attributed to the additional implantation existing in the ODPW devices.

Conclusion: A simple process modification (over-doped P-well) can lead to a faster activation of a classical field oxide transistor and to a significant increase of the failure level. The higher performance of these devices is caused by the lower heat dissipation provoked by the lower electric field and by the spreading of the discharge current deeper in the device.

Gate recess engineering of pseudomorphic In\(_{0.33}\)GaAs/GaAs HEMTs

The authors report how the performance of 0.12 \mu m GaAs pHEMTs is improved by controlling both the gate recess width, using selective dry etching; and the gate position in the source drain gap, using electron beam lithography. pHEMTs with a transconductance of 600 mS/mm, off state breakdown voltages >2 V, \(f_T \) of 120 GHz, \(f_m \) of 135 GHz and MAG of 13.5 dB at 60 GHz are reported.

References

Introduction: The Schottky gate contact of a GaAs pHEMT is usually formed in a shallow etched recess. The depth of the recess sets the gate to channel spacing and controls the gate source capacitance, transconductance, pinch off voltage and high frequency current gain; and the extent of the recess towards the drain affects the drain extension of the gate depletion region and controls the feedback elements: gate drain capacitance, output conductance and hence high frequency power gain. The width of the recess also dramatically affects the access resistance of the device [1].

Device performance: DC measurements of the off state breakdown voltage were made with a constant drain current of 1mA/mm, following the procedure of Bahl and del Alamo [8]. Devices with 25 and 50nm gate offsets showed an off state breakdown of \(V_{bd} = 2.14\,\text{V} \) (\(\sigma = 0.23\,\text{V} \)) while 0nm devices exhibited variable and lower breakdown in the range \(V_{bd} = 0.5 \) to 1.3V. The variation was probably caused by variations in the contact area between the edge of the gate and the highly doped GaAs cap. Similarly the 25 and 50nm offset devices had \(V_{bd} = 4.77\,\text{V} \) (\(\sigma = 0.70\,\text{V} \)) and the 0nm devices had \(V_{bd} = 3.4 \) to 4.4V. All the devices exhibited an on state \((V_g = 0\,\text{V}) \) breakdown voltage of 5V, characterised by a rapid and destructive increase in drain current probably caused by breakdown in the channel. These results agree with those of Geiger et al. [9], who reported an on state breakdown voltage of 5V, independent of the recess size, and recess dependent off state breakdown behaviour. Otherwise we found no variation in the DC parameters against gate source spacing and recess width. Average values from four separate fabrication lots and best standard deviation values were \(L_e = 630\,\text{nm} \), \(g_m = 600\,\text{mS/mm} \) and \(V_{bd} = -0.97\,\text{V} \) (\(\sigma = 16\,\text{mV} \)).

Fabrication: The GaAs pHEMT layer structure was grown as follows: 600nm GaAs buffer, 10nm InGaAs channel, 2.5nm AlGaAs spacer, 7 x 10^15cm^-2 Si delta doping layer, 10nm AlGaAs barrier, 2.5nm GaAs surface buffer, 5nm AlGaAs etch stop layer and 30nm 4x10^12m^-2 Si delta doping layer, 1Onm InGaAs channel, 2.5nm AlGaAs spacer, 7nm GaAs surface buffer, 5nm AlGaAs etch stop layer and 30nm 4x10^12m^-2 Si delta doping layer. This layer structure is fairly conventional except that a thin GaAs surface buffer layer is used to prevent deep oxidation of the AlGaAs exposed in the gate recess. In addition the structure is quite aggressively scaled for optimum short gate device performance in terms of In content, doping density and channel depth. After removal of the GaAs cap the layer was found to have \(N_d = 2.4 \times 10^{15} \text{cm}^{-2} \) and \(\mu_a = 4000 \text{cm}^2/\text{Vs} \). The pHEMT fabrication process has been described in detail by Asenov et al. [6] and further evidence for low damage etching and details of the SiCl3/SiF4 process was reported by Murad et al. [7]. We used SiCl3/SiF4, which forms a very tight recess and does not etch laterally, to produce pHEMTs in which the gate fills the recess (0nm gate offset). The addition of oxygen enhances the lateral etch rate, and allowed devices with 25 and 50nm gate offsets to be produced. Electron beam lithography allowed the position of the gate to be varied with respect to the source contact. A number of devices with 0, 25 and 50nm gate offsets and 0.5 and 0.75um spacing were fabricated and characterised at DC. The RF performance was evaluated by on wafer measurement from 0-60GHz for the following four devices: 0nm gate offset device with 0.5 and 0.75um source to gate spacing, a 25nm gate offset device with 0.75um spacing and a 50nm offset device with 0.5um spacing.

Device performance: DC measurements of the off state breakdown voltage were made with a constant drain current of 1mA/mm, following the procedure of Bahl and del Alamo [8]. Devices with 25 and 50nm gate offsets showed an off state breakdown of \(BV_{bd} = 2.14\,\text{V} \) (\(\sigma = 0.23\,\text{V} \)) while 0nm devices exhibited variable and lower breakdown in the range \(BV_{bd} = 0.5 \) to 1.3V. The variation was probably caused by variations in the contact area between the edge of the gate and the highly doped GaAs cap. Similarly the 25 and 50nm offset devices had \(BV_{bd} = 4.77\,\text{V} \) (\(\sigma = 0.70\,\text{V} \)) and the 0nm devices had \(BV_{bd} = 3.4 \) to 4.4V. All the devices exhibited an on state \((V_g = 0\,\text{V}) \) breakdown voltage of 5V, characterised by a rapid and destructive increase in drain current probably caused by breakdown in the channel. These results agree with those of Geiger et al. [9], who reported an on state breakdown voltage of 5V, independent of the recess size, and recess dependent off state breakdown behaviour. Otherwise we found no variation in the DC parameters against gate source spacing and recess width. Average values from four separate fabrication lots and best standard deviation values were \(L_e = 630\,\text{nm} \), \(g_m = 600\,\text{mS/mm} \) and \(V_{bd} = -0.97\,\text{V} \) (\(\sigma = 16\,\text{mV} \)).

Fig. 1 shows the transconductance \(G_m \) and output conductance \(G_d \) at \(V_g = 1.5\,\text{V} \), extracted by a small signal equivalent circuit fit to the measured s-parameters. Higher \(G_m \) was observed for devices in which the gate was positioned close to the source, but much larger \(G_d \) was obtained for the pHEMTs in which the gate filled the recess compared with devices with significant gate offset. Similar behaviour was observed for \(C_{gs} \) and so an extrinsic \(f_t \) of 120GHz was obtained for all devices. All of the pHEMTs have similar threshold voltage and peak \(G_m \) occurred at similar gate bias, suggesting that the gate to channel separation did not vary. Little variation in the output conductance \((G_d) \) can be observed in Fig. 1. However, \(G_m \) is strongly dependent on the drain bias and, as Fig. 2 shows, variations in the ratio of \(G_m/G_d \) are observed at large \(V_d \). Similar trends were observed with \(C_{gs}/C_{gd} \). In all the devices, as the drain field increases the gate depletion region extends toward the drain and \(G_d \) is reduced. The effect is particularly strong for the 25 and 50nm gate offset devices, although there is also a small reduction in \(G_m \) brought about by moving the gate closer to the source. The ratio of \(G_m/G_d \) and \(C_{gs}/C_{gd} \) determine the high frequency power gain, and thus the best gain is found at \(V_d = 3\,\text{V} \) as shown in Fig. 3. The 50nm gate offset device has the highest MAG of 15.5dB at 90GHz which gives a cutoff frequency \((f_{max}) \) of 180GHz.

The size of the gate recess and the position of the gate affects the access resistances \(R_A \) and \(R_S \). To examine the effect of the recess size only, the extracted values of \(R_A \) and \(R_S \) were added: values of 1 to 1.5, 3.5 and 4.32 were found for the 0, 25 and 50nm...
This indicates that the recess alters the shape of the magnetic field width and gate position was found for the other equivalent circuit elements, except for gate inductance dependent on the recess size with values of 1.1 to 1.3, 4.2 and BV, In,,GaAs/GaAs HEMT. Improved off state breakdown voltage, SiF, /O, to engineer the gate recess of a 0.12~ pseudomorphic surrounding the gate.

Conclusions: We have used selective reactive ion etching in SiCl/ SiF,O, to engineer the gate recess of a 0.12μm pseudomorphic In,GaAs/GaAs HEMT. Improved off state breakdown voltage, BV,MAG > 2V, MAG = 13.5dB at 60GHz and f, = 180GHz were achieved. Other parameters such as DC transconductance, saturated drain current density, threshold voltage and f toe were not dependent on the gate offset. The gate position was also varied and was found to have a much smaller influence than the recess.

References
7 MURAD, S.K., CAMERON, N.I., BEAUMONT, S.P., and WILKINSON, C.D.W., "The effects of O, addition to SiCl/SiF, and the thickness of the capping layer on gate recess etching of GaAs-pseudomorphic high electron mobility transistors', Submitted to Electron Ion and Photon Beams and Nanotechnology, 1996

Ion-implanted 0.4μm wide 2-D MESFET for low power electronics

M.J. Hurt, W.C.B. Peatman, R. Tsai, T. Ytterdal, M. Shur and B.J. Moon

Introduction: Recently, we proposed and fabricated a new transistor called the 2-D metal-semiconductor field effect transistor (2-D MESFET) in which sidewall Schottky contacts on either side of an AlGaAs/InGaAs/GaAs heterostructure laterally deplete the narrow 2-D electron gas (2-DEG) channel [1 - 3]. One of the principal advantages of this device is that the narrow channel effect (NCE) [4], which leads to parasitic currents at the gate edges in a top-gated structure, is eliminated by the unique sidewall gate geometry. Thus, 2-D MESFET device widths may be scaled to deep submicrometre dimensions without degradation of the electrical characteristics [5]. In this Letter, we investigate a new 2-D MESFET fabricated on ion-implanted, bulk n-GaAs material. The ion-implanted 2-D MESFET uses the same geometry as the PHEMT 2-D MESFET and therefore experiences no deterioration from the NCE at submicrometre widths. In addition, the ion-implanted GaAs material is cheaper to fabricate and more compatible with commercial GaAs IC fabrication processes than the MBE-grown AlGaAs/InGaAs/GaAs heterostructure devices. Also, despite a lower mobility in the bulk n-GaAs than in the InGaAs structure, preliminary comparisons indicate that the DC electrical characteristics of submicrometre ion-implanted 2-D MESFETs are comparable to those of submicrometre PHEMT 2-D MESFETs [6].

Fig. 1 Top view and cross-section of ion-implanted 2-D MESFET

Two-dimensional (2-D) MESFETs with 0.4μm channel widths have been fabricated on ion-implanted n-GaAs material. The 2-D MESFET uses sidewall Schottky contacts on either side of an Si-doped channel to laterally modulate the current. The peak drain current is 370mA/mm and the peak transconductance is 295mS/ mm at room temperature. The narrow channel effect and channel length modulation have been reduced in this device.

Fig. 3 pHETs with gate offset of 50nm have the best magnitude of 18.5dB at 60GHz and f, of 180GHz (at V,D = 3V and V,G = 0V), gate source spacing has negligible influence

Lower two lines: 0nm
Above these: 25nm
Top line: 5nm

gate offset devices, respectively. Very little dependence on recess width and gate position was found for the other equivalent circuit elements, except for gate inductance (Lg) which was strongly dependent on the recess size with values of 1.1 to 1.3, 4.2 and 13.6pH obtained for the 0, 25 and 50nm gate offset pHETs. This indicates that the recess alters the shape of the magnetic field surrounding the gate.

Indexing terms: MESFETs, Ion implantation