(doi: 10.1126/science.ade2221)

This is the Author Accepted Manuscript.

There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/278252/

Deposited on: 31 August 2022
Paths to sustainable plastic waste recycling

The outbreak of COVID-19 has driven increased use of medical personal protective equipment, packaged take-out meals, and home-delivered groceries, exacerbating the accumulation of waste plastics (1, 2). The adoption of inappropriate management strategies such as local burning, incineration, and landfilling has also increased, leading to the leakage of waste plastics into the environment and hindering the mitigation of micro- and nanoplastics (3). Approximately 6% of the world’s annual oil production is devoted to plastics, and 850 million metric tons of greenhouse gases was associated with new plastics production and incineration of waste plastics in 2019, which is equivalent to the annual emissions from 189 500-megawatt coal-fired power plants (4, 5). In the face of these challenges, it is imperative to develop strategies to recycle waste plastics more sustainably.

Some national and regional governments are taking action toward this goal. The European Commission has marked plastic recycling as a key priority for the new Circular Economy Action Plan and is planning to introduce a range of quotas for minimum recycled content in new plastic products (8). Some states in the United States have proposed minimum recycled content mandates to end plastic pollution. For example, California has required thermoform plastic containers to contain no less than 20% or 30% (depending on the recycling rate) postconsumer recycled plastic by 2030 (9). These efforts will help mitigate plastic pollution.

Coordinated global actions are also needed. In June, a United Nations Environment Assembly working group began planning for the development of an international legally binding instrument, which 175 nations committed to completing by the end of 2024, to shift away from single-use plastics and ensure the achievement of the UN Sustainable Development Goals (8). The treaty should include recycling standards of practice and require commitments to implement them.

Joint development efforts should work toward technologies that can recycle waste plastics [e.g., (9, 10)]. Designing catalytic processes to recover plastic monomers or valuable alkane products from waste plastic could potentially close the plastic use loop and bring a new and profitable branch to the plastic recycling industry (11, 12). Collective efforts to recycle plastic waste could substantially contribute to achieving an economy with net-zero greenhouse gas emissions by 2050 and limiting global warming to less than 1.5°C by 2100.

Leilei Dai¹, Roger Ruan²*, Siming You², Hanwu Lei²

¹University of Minnesota, Saint Paul, MN 55108, USA. ²University of Glasgow, Glasgow, UK. ³Washington State University, Richland, WA 99354, USA.

*Corresponding author. Email: ruanx001@umn.edu

REFERENCES AND NOTES
6. European Commission, “A new Circular Economy Action Plan for a cleaner and more competitive Europe” (2020); www.eumonitor.eu/9353000/1/j9vwik7m1c13gjsonvd6vh7khf4n9
10.1126/science.ade2221