Finite Element Analysis of Stress Distribution in Soft Sensors Under Torsional Loading

Christou, A., Dahiya, A. S. and Dahiya, R. (2022) Finite Element Analysis of Stress Distribution in Soft Sensors Under Torsional Loading. In: 2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Vienna, Austria, 10-13 Jul 2022, ISBN 9781665442732 (doi: 10.1109/fleps53764.2022.9781555)

[img] Text
273972.pdf - Accepted Version

1MB

Abstract

The wearable and flexible sensors are enabling advances in next-generation technologies such as soft robotics, mobile healthcare, internet of things etc. In consequence, novel materials and manufacturing methods have received most of the attention so far. However, with the growing use of these technologies in real applications, other important areas such as mechanical reliability under repeated mechanical deformations also require greater consideration. A few studies covering this aspect have mainly focused on mechanical stress under simple bending conditions and ignored stress evolution under twisting (torsional) movements. The present work studies the influence of different parameters such as carrier substrate dimensions and its material and twisting angles on the stress distribution during torsional movements using finite element method. Following this, highly stretchable strain sensors are fabricated using nanocomposite of carbon nanotubes and Ecoflex™ and tested under various twisting angles. The soft strain sensor possesses excellent repeatable and robust torsional strain detection properties with >100% change in resistance at ±90° of twisting and has shown potential for wearable and robotics applications.

Item Type:Conference Proceedings
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Dahiya, Dr Abhishek Singh and Dahiya, Professor Ravinder and Christou, Mr Adamos
Authors: Christou, A., Dahiya, A. S., and Dahiya, R.
College/School:College of Science and Engineering > School of Engineering > Electronics and Nanoscale Engineering
Journal Name:2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)
Publisher:IEEE
ISBN:9781665442732
Published Online:10 June 2022
Copyright Holders:Copyright © 2022 IEEE
First Published:First published in 2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)
Publisher Policy:Reproduced in accordance with the publisher copyright policy
Related URLs:

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
301728Engineering Fellowships for Growth: Printed Tactile SKINRavinder DahiyaEngineering and Physical Sciences Research Council (EPSRC)EP/R029644/1ENG - Electronics & Nanoscale Engineering
301327`Hetero-print: A holistic approach to transfer-printing for heterogeneous integration in manufacturingPeter SkabaraEngineering and Physical Sciences Research Council (EPSRC)EP/R03480X/1ENG - Electronics & Nanoscale Engineering