Effective storage of electrons in water by the formation of highly reduced polyoxometalate clusters

Chen, J.-J. et al. (2022) Effective storage of electrons in water by the formation of highly reduced polyoxometalate clusters. Journal of the American Chemical Society, 144(20), pp. 8951-8960. (doi: 10.1021/jacs.1c10584) (PMID:35536652)

[img] Text
268802.pdf - Published Version
Available under License Creative Commons Attribution.

6MB

Abstract

Aqueous solutions of polyoxometalates (POMs) have been shown to have potential as high-capacity energy storage materials due to their potential for multi-electron redox processes, yet the mechanism of reduction and practical limits are currently unknown. Herein, we explore the mechanism of multi-electron redox processes that allow the highly reduced POM clusters of the form {MO3}y to absorb y electrons in aqueous solution, focusing mechanistically on the Wells–Dawson structure X6[P2W18O62], which comprises 18 metal centers and can uptake up to 18 electrons reversibly (y = 18) per cluster in aqueous solution when the countercations are lithium. This unconventional redox activity is rationalized by density functional theory, molecular dynamics simulations, UV–vis, electron paramagnetic resonance spectroscopy, and small-angle X-ray scattering spectra. These data point to a new phenomenon showing that cluster protonation and aggregation allow the formation of highly electron-rich meta-stable systems in aqueous solution, which produce H2 when the solution is diluted. Finally, we show that this understanding is transferrable to other salts of [P5W30O110]15– and [P8W48O184]40– anions, which can be charged to 23 and 27 electrons per cluster, respectively.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Busche, Dr Christopher and Ganin, Dr Alexey and Vila-Nadal, Dr Laia and Chisholm, Dr Greig and Zhao, Dr Tingting and Minato, Dr Takuo and Kandasamy, Dr Balamurugan and Cronin, Professor Lee and Chen, Dr Jiajia
Authors: Chen, J.-J., Vilà-Nadal, L., Solé-Daura, A., Chisholm, G., Minato, T., Busche, C., Zhao, T., Kandasamy, B., Ganin, A. Y., Smith, R. M., Colliard, I., Carbó, J. J., Poblet, J. M., Nyman, M., and Cronin, L.
College/School:College of Science and Engineering > School of Chemistry
Journal Name:Journal of the American Chemical Society
Publisher:American Chemical Society
ISSN:0002-7863
ISSN (Online):1520-5126
Published Online:10 May 2022
Copyright Holders:Copyright © 2022 American Chemical Society
First Published:First published in Journal of the American Chemical Society 144(20): 8951-8960
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
166449Programmable Molecular Metal Oxides (PMMOs) - From Fundamentals to ApplicationLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/J015156/1Chemistry
190796Programmable 'Digital' Synthesis for Discovery and Scale-up of Molecules, Clusters and NanomaterialsLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/L023652/1Chemistry
166779Innovative Manufacturing Research Centre for Continuous Manufacturing and Crystallisation (CMAC)Leroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/I033459/1Chemistry
166449Programmable Molecular Metal Oxides (PMMOs) - From Fundamentals to ApplicationLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/J015156/1Chemistry
167864Energy and the Physical Sciences: Hydrogen Production using a Proton Electron BufferLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/K023004/1Chemistry
190796Programmable 'Digital' Synthesis for Discovery and Scale-up of Molecules, Clusters and NanomaterialsLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/L023652/1Chemistry
172151SMARTPOM: Artificial-Intelligence Driven Discovery and Synthesis of Polyoxometalate ClustersLeroy CroninEuropean Research Council (ERC)670467Chemistry