The mitochondrial basis for adaptive variation in aerobic performance in high-altitude deer mice

Scott, G. R., Guo, K. H. and Dawson, N. J. (2018) The mitochondrial basis for adaptive variation in aerobic performance in high-altitude deer mice. Integrative and Comparative Biology, 58(3), pp. 506-518. (doi: 10.1093/icb/icy056) (PMID:29873740)

Full text not currently available from Enlighten.

Abstract

Mitochondria play a central role in aerobic performance. Studies aimed at elucidating how evolved variation in mitochondrial physiology contributes to adaptive variation in aerobic performance can therefore provide a unique and powerful lens to understanding the evolution of complex physiological traits. Here, we review our ongoing work on the importance of changes in mitochondrial quantity and quality to adaptive variation in aerobic performance in high-altitude deer mice. Whole-organism aerobic capacity in hypoxia (VO2max) increases in response to hypoxia acclimation in this species, but high-altitude populations have evolved consistently greater VO2max than populations from low altitude. The evolved increase in VO2max in highlanders is associated with an evolved increase in the respiratory capacity of the gastrocnemius muscle. This appears to result from highlanders having more mitochondria in this tissue, attributed to a higher proportional abundance of oxidative fiber-types and a greater mitochondrial volume density within oxidative fibers. The latter is primarily caused by an over-abundance of subsarcolemmal mitochondria in high-altitude mice, which is likely advantageous for mitochondrial O2 supply because more mitochondria are situated adjacent to the cell membrane and close to capillaries. Evolved changes in gastrocnemius phenotype appear to be underpinned by population differences in the expression of genes involved in energy metabolism, muscle development, and vascular development. Hypoxia acclimation has relatively little effect on respiratory capacity of the gastrocnemius, but it increases respiratory capacity of the diaphragm. However, the mechanisms responsible for this increase differ between populations: lowlanders appear to adjust mitochondrial quantity and quality (i.e., increases in citrate synthase [CS] activity, and mitochondrial respiration relative to CS activity) and they exhibit higher rates of mitochondrial release of reactive oxygen species, whereas highlanders only increase mitochondrial quantity in response to hypoxia acclimation. In contrast to the variation in skeletal muscles, the respiratory capacity of cardiac muscle does not appear to be affected by hypoxia acclimation and varies little between populations. Therefore, evolved changes in mitochondrial quantity and quality make important tissue-specific contributions to adaptive variation in aerobic performance in high-altitude deer mice.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Dawson, Dr Neal
Authors: Scott, G. R., Guo, K. H., and Dawson, N. J.
College/School:College of Medical Veterinary and Life Sciences > School of Biodiversity, One Health & Veterinary Medicine
Journal Name:Integrative and Comparative Biology
Publisher:Oxford University Press
ISSN:1540-7063
ISSN (Online):1557-7023
Published Online:26 June 2018

University Staff: Request a correction | Enlighten Editors: Update this record