A practical approach to combine modular reactions and reactionware for the digitization of chemical synthesis

Bubliauskas, A., Blair, D. J., Powell-Davies, H., Kitson, P. J., Burke, M. and Cronin, L. (2022) A practical approach to combine modular reactions and reactionware for the digitization of chemical synthesis. Angewandte Chemie (International Edition), 61(24), e202116108. (doi: 10.1002/anie.202116108) (PMID:35257447)

[img] Text
266708.pdf - Published Version
Available under License Creative Commons Attribution.

7MB

Abstract

Chemistry digitization requires an unambiguous link between experiments and the code used to generate the experimental conditions and outcomes, yet this process is not standardized, limiting the portability of any chemical code. What is needed is a universal approach to aid this process using a well-defined standard that is composed of syntheses that are employed in modular hardware. Herein we present a new approach to the digitization of organic synthesis that combines process chemistry principles with 3D printed reactionware. This approach outlines the process for transforming unit operations into digitized hardware and well-defined instructions that ensure effective synthesis. To demonstrate this, we outline the process for digitizing 3 MIDA boronate building blocks, an ester hydrolysis, a Wittig olefination, a Suzuki-Miyaura coupling reaction, and synthesis of the drug sulfanilamide.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Kitson, Dr Philip and Powell-Davies, Henry and Bubliauskas, Mr Andrius and Cronin, Professor Lee
Authors: Bubliauskas, A., Blair, D. J., Powell-Davies, H., Kitson, P. J., Burke, M., and Cronin, L.
College/School:College of Science and Engineering > School of Chemistry
Journal Name:Angewandte Chemie (International Edition)
Publisher:Wiley
ISSN:1433-7851
ISSN (Online):1521-3773
Published Online:07 March 2022
Copyright Holders:Copyright © 2022 The Authors
First Published:First published in Angewandte Chemie (International Edition) 61(24): e202116108
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
190796Programmable 'Digital' Synthesis for Discovery and Scale-up of Molecules, Clusters and NanomaterialsLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/L023652/1Chemistry
301241Ultra-Reduced Polyoxometalates as Electron-Coupled-Proton-Systems for Energy StorageLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/R020914/1Chemistry
304037EPSRC International Centre-to-Centre CroninLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/S030603/1Chemistry
300591Programmable Molecular Metal Oxides (PMMOs) - From Fundamentals to ApplicationLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/R01308X/1Chemistry
3026673DSynth: Design and fabrication of cartridges for digital chemical synthesisLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/S017046/1Chemistry
303747Digital-Chemical-Robotics for Translation of Code to Molecules and Complex Chemical SystemsLeroy CroninEngineering and Physical Sciences Research Council (EPSRC)EP/S019472/1Chemistry
172151SMARTPOM: Artificial-Intelligence Driven Discovery and Synthesis of Polyoxometalate ClustersLeroy CroninEuropean Research Council (ERC)670467Chemistry
302959Microbial deployment of new-to-nature chemistries for refactoring the barriers between living and non-living matterLeroy CroninEuropean Commission (EC)766975Chemistry
173546A molecular complexity approach to identifying bio-signatures, shadow-life, and new life formsLeroy CroninJohn Templeton Foundation (TEMPLFOU)60625Chemistry
300851Programmable Multiplexed Droplets and Arrays Containing Reaction NetworksLeroy CroninDefense Advanced Research Projects Agency (DARPA)W911NF-18-2-0036Chemistry