Volumetric growth of soft tissues evaluated in the current configuration

Zhuan, X. and Luo, X.Y. (2022) Volumetric growth of soft tissues evaluated in the current configuration. Biomechanics and Modeling in Mechanobiology, 21(2), pp. 569-588. (doi: 10.1007/s10237-021-01549-y) (PMID:35044527)

[img] Text
261989.pdf - Published Version
Available under License Creative Commons Attribution.



The growth and remodelling of soft tissues plays a significant role in many physiological applications, particularly in understanding and managing many diseases. A commonly used approach for soft tissue growth and remodelling is volumetric growth theory, introduced in the framework of finite elasticity. In such an approach, the total deformation gradient tensor is decomposed so that the elastic and growth tensors can be studied separately. A critical element in this approach is to determine the growth tensor and its evolution with time. Most existing volumetric growth theories define the growth tensor in the reference (natural) configuration, which does not reflect the continuous adaptation processes of soft tissues under the current configuration. In a few studies where growth from a loaded configuration was considered, simplifying assumptions, such as compatible deformation or geometric symmetries, were introduced. In this work, we propose a new volumetric growth law that depends on fields evaluated in the current configuration, which is residually stressed and loaded, without any geometrical restrictions. We illustrate our idea using a simplified left ventricle model, which admits inhomogeneous growth in the current configuration. We compare the residual stress distribution of our approach with the traditional volumetric growth theory, that assumes growth occurring from the natural reference configuration. We show that the proposed framework leads to qualitative agreements with experimental measurements. Furthermore, using a cylindrical model, we find an incompatibility index that explains the differences between the two approaches in more depth. We also demonstrate that results from both approaches reach the same steady solution published previously at the limit of a saturated growth. Although we used a left ventricle model as an example, our theory is applicable in modelling the volumetric growth of general soft tissues.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Luo, Professor Xiaoyu and Zhuan, Mr Xin
Authors: Zhuan, X., and Luo, X.Y.
College/School:College of Science and Engineering > School of Mathematics and Statistics > Mathematics
Journal Name:Biomechanics and Modeling in Mechanobiology
ISSN (Online):1617-7940
Published Online:19 January 2022
Copyright Holders:Copyright © 2022 The Authors
First Published:First published in Biomechanics and Modeling in Mechanobiology 21(2): 569-588
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
303798Growth and Remodelling in Neoanatal Porcine Heart-- Pushing Mathematics through ExperimentsXiaoyu LuoEngineering and Physical Sciences Research Council (EPSRC)EP/S014284/1M&S - Mathematics
303232EPSRC Centre for Multiscale soft tissue mechanics with MIT and POLIMI (SofTMech-MP)Xiaoyu LuoEngineering and Physical Sciences Research Council (EPSRC)EP/S030875/1M&S - Mathematics
172141EPSRC Centre for Multiscale soft tissue mechanics with application to heart & cancerRaymond OgdenEngineering and Physical Sciences Research Council (EPSRC)EP/N014642/1M&S - Mathematics
303231A whole-heart model of multiscale soft tissue mechanics and fluid structureinteraction for clinical applications (Whole-Heart-FSI)Xiaoyu LuoEngineering and Physical Sciences Research Council (EPSRC)EP/S020950/1M&S - Mathematics