
The material cannot be used for any other purpose without further permission of the publisher and is for private use only.

There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/260946/

Deposited on 14 December 2021

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk
Terahertz intersubband electroluminescence from n-type germanium quantum wells

David Stark\(^1\), Muhammad Mirza\(^2\), Luca Persichetti\(^3\), Michele Montanari\(^3\), Sergej Markmann\(^1\), Mattias Beck\(^1\), Thomas Grange\(^1\), Stefan Birner\(^1\), Michele Virgilio\(^1\), Chiara Ciano\(^3\), Michele Ortoli\(^6\), Cedric Corley\(^7\), Giovanni Capellini\(^3,7\), Luciana Di Gaspare\(^5\), Monica De Setta\(^7\), Douglas J. Paul\(^2\), Jérôme Faist\(^1\), Giacomo Scalari\(^1\)

1. Institute for Quantum Electronics, Department of Physics, ETH Zürich, Switzerland
2. James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
3. Dipartimento di Scienza, Universita Roma Tre, Roma 00146, Italy
4. nextnano GmbH, Konrad-Zuse-Platz 8, München 81289, Germany
5. Dipartimento di Fisica “E. Fermi,” Universita di Pisa, Pisa 56127, Italy
6. Sapienza University of Rome, Department of Physics, Piazzale Aldo Moro 2, I-00185 Rome, Italy
7. IHP - Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, D-15236 Frankfurt (Oder) Germany

The Quantum Cascade Laser (QCL) has been demonstrated in polar III-V semiconductor materials employing transitions between conduction band states [1]. Harnessing intersubband transitions allows lasing at mid-infrared and far-infrared wavelengths. Buried InGaAs/InAlAs QCLs unlocked the mid-infrared application space, because they are operational at room-temperature and in continuous wave [2]. However, THz QCLs remain limited up to 250 K in pulsed operation with a large dissipation [3]. The quenching of the laser emission is related to thermally activated LO phonon emission in polar materials. Exploiting intersubband transitions in non-polar group IV materials with weaker electron-phonon interaction is an exciting approach to realize a Si-based THz QCL and to eventually elevate the operation temperature [4].

We report THz intersubband electroluminescence originating from n-type Ge/SiGe quantum cascade structures [5]. In Fig. 1 the electroluminescence spectra from three different structures (named 2307, 2306 and 2315) are shown. The structures are grown with ultra-high vacuum chemical vapour deposition and processed into deeply etched diffraction gratings. The nominally 4.2 um thick active regions consists of 50 periods of a single quantum well design. A line broadening of $\Delta f / f \approx 0.2$ is observed [5] and the spectral features agree with non-equilibriums Green’s function calculations (see Fig. 1(c)) [4]. The Ge/SiGe emitters are benchmarked against a similar GaAs/AlGaAs struc-ture processed into the same device geometry [5]. The results pave the way towards the realization of a THz QCL on a silicon substrate.

![Fig. 1. Electroluminescence spectra from three different Ge/SiGe samples (a) (b) and (c). In (a) and (b) the simulated peak positions are indicated with the vertical dotted lines. In (c) the gray dashed line corresponds to the theoretical electroluminescence spectrum computed with nextnano.NEGF.](image)

References