Technical workflow development for integrating drone surveys and entomological sampling to characterise aquatic larval habitats of Anopheles funestus in agricultural landscapes in Côte d’Ivoire

Byrne, I. et al. (2021) Technical workflow development for integrating drone surveys and entomological sampling to characterise aquatic larval habitats of Anopheles funestus in agricultural landscapes in Côte d’Ivoire. Journal of Environmental and Public Health, 2021, 3220244. (doi: 10.1155/2021/3220244) (PMID:34759971) (PMCID:PMC8575637)

[img] Text
258199.pdf - Published Version
Available under License Creative Commons Attribution.

8MB

Abstract

Land-use practices such as agriculture can impact mosquito vector breeding ecology, resulting in changes in disease transmission. The typical breeding habitats of Africa’s second most important malaria vector Anopheles funestus are large, semipermanent water bodies, which make them potential candidates for targeted larval source management. This is a technical workflow for the integration of drone surveys and mosquito larval sampling, designed for a case study aiming to characterise An. funestus breeding sites near two villages in an agricultural setting in Côte d’Ivoire. Using satellite remote sensing data, we developed an environmentally and spatially representative sampling frame and conducted paired mosquito larvae and drone mapping surveys from June to August 2021. To categorise the drone imagery, we also developed a land cover classification scheme with classes relative to An. funestus breeding ecology. We sampled 189 potential breeding habitats, of which 119 (63%) were positive for the Anopheles genus and nine (4.8%) were positive for An. funestus. We mapped 30.42 km2 of the region of interest including all water bodies which were sampled for larvae. These data can be used to inform targeted vector control efforts, although its generalisability over a large region is limited by the fine-scale nature of this study area. This paper develops protocols for integrating drone surveys and statistically rigorous entomological sampling, which can be adjusted to collect data on vector breeding habitats in other ecological contexts. Further research using data collected in this study can enable the development of deep-learning algorithms for identifying An. funestus breeding habitats across rural agricultural landscapes in Côte d’Ivoire and the analysis of risk factors for these sites.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Fornace, Dr Kimberly
Authors: Byrne, I., Chan, K., Manrique, E., Lines, J., Wolie, R., Trujillano, F., Jimenez Garay, G., Nunez Del Prado Cortez, M., Alastrista-Salas, H., Sternberg, E., Cook, J., N'Guessan, R., Koffi, A., Ahoua Alou, L., Apollinaire, N., Messenger, L., Kristan, M., Carrasco-Escobar, G., and Fornace, K.
College/School:College of Medical Veterinary and Life Sciences > Institute of Biodiversity Animal Health and Comparative Medicine
College of Medical Veterinary and Life Sciences > School of Biodiversity, One Health & Veterinary Medicine
Journal Name:Journal of Environmental and Public Health
Publisher:Hindawi
ISSN:1687-9805
ISSN (Online):1687-9813
Copyright Holders:Copyright © 2021 Isabel Byrne et al.
First Published:First published in Journal of Environmental and Public Health 2021: 3220244
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
310866Socio-ecological dynamics of zoonotic and vector-borne diseases in changing landscapes: implications for surveillance and controlKimberly FornaceWellcome Trust (WELLCOTR)221963/Z/20/ZInstitute of Biodiversity, Animal Health and Comparative Medicine