The eigenbuckling analysis of hexagonal lattices: closed-form solutions

Adhikari, S. (2021) The eigenbuckling analysis of hexagonal lattices: closed-form solutions. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 477(2251), 20210244. (doi: 10.1098/rspa.2021.0244)

Full text not currently available from Enlighten.

Abstract

Elastic instability such as the buckling of cellular materials plays a pivotal role in their analysis and design. Despite extensive research, the quantifi- cation of critical stresses leading to elastic instabi- lities remains challenging due to the inherent nonlinearities. We develop an analytical approach considering the spectral decomposition of the elasticity matrix of two-dimensional hexagonal lattice materials. The necessary and sufficient condition for the buckling is established through the zeros of the eigenvalues of the elasticity matrix. Through the analytical solution of the eigenvalues, the conditions involving equivalent elastic properties of the lattice were directly connected to the mathematical requirement of buckling. The equivalent elastic properties are expressed in closed form using geometric properties of the lattice and trigonometric functions of a non-dimensional axial force parameter. The axial force parameter was identified for four different stress cases, namely, compressive stress in the longitudinal and transverse directions separately and together and torsional stress. By solving the resulting nonlinear equations, we derive exact analytical expressions of critical eigenbuckling stresses for these four cases. Crucial parameter combinations leading to minimum buckling stresses are derived analytically. The exact closed-form analytical expressions derived in the paper can be used for quick engineering design calculations and benchmarking related experimental and numerical studies.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Adhikari, Professor Sondipon
Authors: Adhikari, S.
College/School:College of Science and Engineering > School of Engineering > Infrastructure and Environment
Journal Name:Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences
Publisher:The Royal Society
ISSN:1364-5021
ISSN (Online):1471-2946
Published Online:07 July 2021

University Staff: Request a correction | Enlighten Editors: Update this record