On the Hochschild homology of quantum SL(N)

Hadfield, T. and Kraehmer, U. (2006) On the Hochschild homology of quantum SL(N). Comptes Rendus Mathématique, 343(1), pp. 9-13. (doi: 10.1016/j.crma.2006.03.031)

[img] Text


Publisher's URL: http://dx.doi.org/10.1016/j.crma.2006.03.031


We show that the quantized coordinate ring A:=kq[SL(N)] satisfies van den Bergh's analogue of Poincaré duality for Hochschild (co)homology with dualizing bimodule being Aσ, the A-bimodule which is A as k-vector space with right multiplication twisted by the modular automorphism σ of the Haar functional. This implies that HN2−1(A,Aσ)≅ congruent withk, generalizing our previous result for kq[SL(2)].

Item Type:Articles
Glasgow Author(s) Enlighten ID:Kraehmer, Dr Ulrich
Authors: Hadfield, T., and Kraehmer, U.
Subjects:Q Science > QA Mathematics
College/School:College of Science and Engineering > School of Mathematics and Statistics > Mathematics
Journal Name:Comptes Rendus Mathématique

University Staff: Request a correction | Enlighten Editors: Update this record