Effect of tube spacing on the vortex shedding characteristics of laminar flow past an inline tube array: a numerical study

Liang, C., Papadakis, G. and Luo, X.Y. (2009) Effect of tube spacing on the vortex shedding characteristics of laminar flow past an inline tube array: a numerical study. Computers and Fluids, 38(4), pp. 950-964. (doi: 10.1016/j.compfluid.2008.10.005)

Full text not currently available from Enlighten.

Abstract

The effect of tube spacing on the vortex shedding characteristics and fluctuating forces in an inline cylinder array is studied numerically. The examined Reynolds number is 100 and the flow is laminar. The numerical methodology and the code employed to solve the Navier–Stokes and continuity equations in an unstructured finite volume grid are validated for the case of flow past two tandem cylinders at four spacings. Computations are then performed for a six-row inline tube bank for eight pitch-to-diameter ratios, s, ranging from 2.1 to 4. At the smallest spacing examined (s = 2.1) there are five stagnant and symmetric recirculation zones and weak vortex shedding activity occurs only behind the last cylinder. As s increases, the symmetry of the recirculation zones breaks leading to vortex shedding and this process progressively moves upstream, so that for s = 4 there is clear shedding from every row. For any given spacing, the shedding frequency behind each cylinder is the same. A critical spacing range between 3.0 and 3.6 is identified at which the mean drag as well as the rms lift and drag coefficients for the last three cylinders attain maximum values. Further increase to s = 4 leads to significant decrease in the force statistics and increase in the Strouhal number. It was found that at the critical spacing there is 180° phase difference in the shedding cycle between successive cylinders and the vortices travel a distance twice the tube spacing within one period of shedding

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Luo, Professor Xiaoyu
Authors: Liang, C., Papadakis, G., and Luo, X.Y.
Subjects:Q Science > QA Mathematics
Q Science > QC Physics
College/School:College of Science and Engineering > School of Mathematics and Statistics > Mathematics
Journal Name:Computers and Fluids
Journal Abbr.:Comput. Fluids
Publisher:Elsevier
ISSN:0045-7930
ISSN (Online):1879-0747
Published Online:14 November 2008

University Staff: Request a correction | Enlighten Editors: Update this record