Robotic Stepwise Synthesis of Hetero-Multinuclear Metal Oxo Clusters as Single-Molecule Magnets

Takuo Minato, Daniel Salley, Noritaka Mizuno, Kazuya Yamaguchi, Leroy Cronin,* and Kosuke Suzuki*

ABSTRACT: An efficient stepwise synthesis method for discovering new heteromultinuclear metal clusters using a robotic workflow is developed where numerous reaction conditions for constructing heteromultinuclear metal oxo clusters in polyoxometalates (POMs) were explored using a custom-built automated platform. As a result, new nonanuclear tetrametallic oxo clusters \{\text{FeMn}_4\}_2\text{Lu}_2A_2 in TBA\{\text{A-}\alpha-\text{SiW}_{9}O_{34}\}_2\text{FeMn}_4\text{O}_2\{\text{Lu}-(\text{acac})_2\}A_2\} (\text{II}^A; A = \text{Ag, Na, K}; \text{TBA} = \text{tetra-n-butylammonium; acac = acetylacetonate}) were discovered by the installation of diamagnetic metal cations A' into a paramagnetic \{\text{FeMn}_4\}_2\text{Lu}_2 unit in TBA\{\text{A-}\alpha-\text{SiW}_{9}O_{34}\}_2\text{FeMn}_4\text{O}_2\{\text{Lu}-(\text{acac})_2\}A_2\} (\text{I}). POMs \text{II}^A exhibited single-molecule magnet properties with the higher energy barriers for magnetization reversal (\text{II}^A\text{Ag}, 40.0 \text{K}; \text{II}^A\text{Na}, 40.3 \text{K}; \text{II}^A\text{K}, 26.7 \text{K}) compared with that of the parent I (19.7 K). Importantly, these clusters with unique properties were constructed as designed by a step of the predictable sequential multistep reactions with the time-efficient platform.

INTRODUCTION

Over the past several decades, material scientists have tried to develop effective methods in response to the scientifically inspirational question posed by Richard P. Feynman: "What could the properties of materials be if we could really arrange the atoms the way we want?"\(^1\) In molecular synthetic chemistry, controlling physical and chemical properties of homo/heteromultinuclear metal clusters by precise structural arrangement is crucial\(^2\) because the combination, nuclearity, and coordination geometries of metal cations are closely correlated to the electronic and magnetic interactions between metal cations.\(^3\) From the viewpoint of constructing desired heteromultinuclear metal clusters, the stepwise synthesis method using a bottom-up approach has proven to be a powerful tool when compared with the one-step (usually one-pot) synthesis method by serendipitous or empirical molecular assembly (Figure 1a).\(^4\) This is primarily due to the fact that stepwise synthesis enables the chemist to target desired structures using specifically designed multidentate ligands, allowing for the selection of specific metal sources at each step (Figure 1b). However, stepwise synthesis is a time-consuming method as the combinations of metal cations grow exponentially as the variety of metal cations available is increased. An additional difficulty is that unpredictable condensation/dissociation reactions of metal-containing species often occur due to flexibility in some multidentate organic ligands that lack bulky functional groups (Figure S1).\(^5\) Thus, the development of a time-efficient simple method applicable to dozens of reaction conditions in order to construct atomically designed heteromultinuclear metal clusters in a predictable system is required.\(^6\)

Polyoxometalates (POMs) are a family of anionic molecular metal oxide clusters that exhibit diversity of structures, sizes, and physical and chemical properties.\(^7\) By utilizing lacunary POMs as robust, bulky multidentate inorganic ligands, numerous types of multinuclear metal and metal oxo clusters possessing unique catalytic, electronic, and magnetic properties have been synthesized.\(^8\)\(^,\)\(^9\) Recently, we have successfully synthesized heteromultinuclear metal oxo clusters possessing a wide variety of metal cations using lacunary POMs.\(^9a\)\(^,\)\(^9b\) In these reports, arranging the proper types of metal cations in the desired position was demonstrated by the stepwise synthesis method, showing the precise control of their coordination geometries and magnetic properties. These results indicated that lacunary POMs act as ideal multidentate ligands for constructing various types of heteromultinuclear metal clusters by a predictable stepwise synthesis method. However, it can still require a lot of time and effort to carry out screening of large areas of reaction parameter space in multistep synthesis. For this, we chose to take advantage of recent advances in
appreciate to the digitization of chemical synthesis and utilize a bespoke workflow to allow the stepwise synthesis of modular metal oxide clusters.

A number of automated synthesis methods have been reported in recent years for a variety of synthetic systems. More recently, a modular system for the combinatorial exploration of inorganic chemical space has been developed in the Cronin group at the University of Glasgow named the Modular Wheel Platform (MWP). This system has proven to be a powerful tool for automated screening of reaction conditions in unestablished procedures (Figure 2). Importantly, screening processes of steps (2) and (3) are the bottlenecks to discover new compounds in a manual stepwise synthesis method even when structures of desired compounds are predictable. To demonstrate the efficient robotic stepwise synthesis method, a system of heteromultinuclear metal oxo clusters within trivacant lacunary POMs is chosen in this study because the above-mentioned three tasks can be systematically examined.

By utilizing TBA$_4$-[A-α-SiW$_9$O$_34$](H$_2$O)$_3$$_2$Fe (TBA = tetra-$\alpha$-butylammonium) as a multidentate inorganic ligand, we have developed the sequential synthesis method for constructing heteromultinuclear metal clusters, including TBA$_4$[A-α-SiW$_9$O$_34$]Fe (Fe), TBA$_4$[A-α-SiW$_9$O$_34$]FeMn$_4$(OH)$_3$$_2$ [FeMn$_4$$_2$], and TBA$_4$[A-$\alpha$-SiW$_9O_34$]$_2$FeMn$_4O_2$(Lu(acac)$_3$)$_2$ (I, acac = acetylacetonate). It takes about 1 week in each step to synthesize and characterize these clusters via stirring the solutions, isolation and crystallization of powder samples, and analyses by X-ray, IR, mass measurements, etc. using established synthesis methods (Figure 2), while it will take several weeks to months in order to examine the reactivity of the precursor with metal cations and to optimize synthesis and crystallization conditions in unestablished procedures, such as addition of various types of univalent metal cations into I (Figure 2). It should be noted that it took several months to establish the synthesis conditions of Fe$_2$, FeMn$_4$, or I.

Since the structure of I was controlled in an atomic level by the stepwise synthesis method, I possessed unique features applicable to the digitization of chemical synthesis. First, POM I possesses four pseudo vacant sites that can potentially react with a variety of univalent metal cations, which enables us to predict accurately the possible structures (Figure S2). Second, to screen the various cation types and finally to vary the stoichiometric ratio of univalent metal cations to assess reactivity, which is important in an unestablished procedure. In addition, as POM I shows SMM properties, the effect of the types of installed diamagnetic metal cations on magnetic properties is also interesting in terms of “modular synthesis approach”.

Furthermore, since a series of heptanuclear trimetallic [M$_4^+$M$_2$]M$_1^-$ clusters in POMs can be synthesized by established three-step reactions of TBA$_4$[A-α-SiW$_9$O$_34$](H$_2$O)$_3$$_2$ with metal cations, automated synthesis of numerous types of heteromultinuclear metal oxo clusters in POMs as designed would be possible by expanding the methodology in this study.

First, we examined the one-pot stepwise synthesis of I from {Fe$_2$} without isolation of the intermediate structure {FeMn$_4$} to assess whether the system was applicable to the MWP and to accelerate the established procedures (Figure 2). Into a 1,2-dichloromethane solution of I (4 mM, 2 mL), 1,2-dichloromethane solutions of Mn(acac)$_3$ (16 mM, 0.25 mL) and Lu(acac)$_3$ (16 mM, 0.25 mL) were added in this order and a molecule magnets (SMMs) including the structure with the highest energy barrier for magnetization reversal (U_{eff}) among the previously reported transition metal-containing POMs.

RESULTS AND DISCUSSION

In a stepwise synthesis method, to reduce time and effort for synthesizing new compounds and to discover unknown compounds efficiently, it is necessary to achieve (1) acceleration of established procedures, (2) examination of various synthesis conditions at the same time, and (3) optimization of the best synthesis and crystallization conditions in unestablished procedures (Figure 2). Importantly, screening processes of steps (2) and (3) are the bottlenecks to discover new compounds in a manual stepwise synthesis method even when structures of desired compounds are predictable. To demonstrate the efficient robotic stepwise synthesis method, a system of heteromultinuclear metal oxo clusters within trivacant lacunary POMs is chosen in this study because the above-mentioned three tasks can be systematically examined.

By utilizing TBA$_4$[A-α-SiW$_9$O$_34$](H$_2$O)$_3$$_2$Fe (TBA = tetra-$\alpha$-butylammonium) as a multidentate inorganic ligand, we have developed the sequential synthesis method for constructing heteromultinuclear metal clusters, including TBA$_4$[A-α-SiW$_9$O$_34$]Fe (Fe), TBA$_4$[A-α-SiW$_9$O$_34$]FeMn$_4$(OH)$_3$$_2$ [FeMn$_4$$_2$], and TBA$_4$[A-$\alpha$-SiW$_9O_34$]$_2$FeMn$_4O_2$(Lu(acac)$_3$)$_2$ (I, acac = acetylacetonate). It takes about 1 week in each step to synthesize and characterize these clusters via stirring the solutions, isolation and crystallization of powder samples, and analyses by X-ray, IR, mass measurements, etc. using established synthesis methods (Figure 2), while it will take several weeks to months in order to examine the reactivity of the precursor with metal cations and to optimize synthesis and crystallization conditions in unestablished procedures, such as addition of various types of univalent metal cations into I (Figure 2). It should be noted that it took several months to establish the synthesis conditions of {Fe$_2$}, {FeMn$_4$}, or I.

Since the structure of I was controlled in an atomic level by the stepwise synthesis method, I possessed unique features applicable to the digitization of chemical synthesis. First, POM I possesses four pseudo vacant sites that can potentially react with a variety of univalent metal cations, which enables us to predict accurately the possible structures (Figure S2). Second, to screen the various cation types and finally to vary the stoichiometric ratio of univalent metal cations to assess reactivity, which is important in an unestablished procedure. In addition, as POM I shows SMM properties, the effect of the types of installed diamagnetic metal cations on magnetic properties is also interesting in terms of “modular synthesis approach”.

Furthermore, since a series of heptanuclear trimetallic [M$_4^+$M$_2$]M$_1^-$ clusters in POMs can be synthesized by established three-step reactions of TBA$_4$[A-α-SiW$_9$O$_34$](H$_2$O)$_3$$_2$ with metal cations, automated synthesis of numerous types of heteromultinuclear metal oxo clusters in POMs as designed would be possible by expanding the methodology in this study.

First, we examined the one-pot stepwise synthesis of I from {Fe$_2$} without isolation of the intermediate structure {FeMn$_4$} to assess whether the system was applicable to the MWP and to accelerate the established procedures (Figure 2). Into a 1,2-dichloromethane solution of I (4 mM, 2 mL), 1,2-dichloromethane solutions of Mn(acac)$_3$ (16 mM, 0.25 mL) and Lu(acac)$_3$ (16 mM, 0.25 mL) were added in this order and a
stepwise manner. The electrospray ionization mass measurement of the synthetic solution in each step showed sets of signals assignable to \{Fe\}, \{FeMn_{4}\}, or I, indicating that the reaction proceeded without isolation of the intermediate structure (Figure S3). These results illustrated that the continuous one-pot multistep synthesis of I was possible, thus indicating that this system would be directly applicable to the MWP. Since it was not necessary to isolate and characterize the intermediate structures, one-pot stepwise synthesis of I could surely reduce time and effort for the established synthesis. More importantly, by changing the types of metal sources, various types of heteromultinuclear metal clusters, including \{M^{1} M^{2}_{4} \}M^{3}_{2} (M^{1} = V^{3+}, Cr^{3+}, Mn^{3+}, Fe^{3+}, Co^{3+}, Ni^{2+}, Cu^{2+}; M^{2} = Mn^{3+}, Cu^{2+}; M^{3} = Gd^{3+}, Dy^{3+}, Lu^{3+}, etc.), can be synthesized automatically at the same time within a few days, which enables to accelerate screening processes of the established stepwise synthesis method (Figures 1b, 2).

Next, we demonstrated the MWP-assisted stepwise synthesis utilizing I to solve the main bottleneck for discovering new compounds in the unestablished procedure. To achieve the automated stepwise synthesis using POM I, it is crucial to control synthesis conditions, including (1) temperature, (2) reaction time, and (3) stirring speed, over all reaction vessels. In addition to the environmental conditions, the precise control of screening parameters, including (4) concentration of POM solution, (5) types and (6) equivalents of added metal cations, and (7) amount of poor solvent against synthetic solution for crystallization, are also important to assess reactivity. Therefore, we utilized the MWP where these parameters can be digitized and accurately delivered to our reaction vessels. The system itself uses in house software, written in Python to control hardware via Arduino to run the operations of the synthesis.1 The MWP-assisted screening was attempted using the following stock solutions: acetonitrile, acetonitrile solution of I (8.32 mM), acetonitrile solution of AOTf (A = Li, Na, K, Ag; 50 mM), and diethyl ether (poor solvent) (Figure 3). The volume of each solution was programmed as follows: The concentration of I in the synthetic solution was set to 10, 20, and 30 mg/mL, and the

Figure 2. Schematic of manual and automated stepwise synthesis of I. Required time in each step are shown as bold arrows. Required tasks in each step are shown under the allows, where tasks in red can be automated. The atoms are represented by polyhedra and spheres: Si, gray; W, light green; Fe, pink; Mn, purple; Lu, orange; and A, black. Oxygen and carbon atoms are represented by small red and black spheres, respectively.

Figure 3. Schematic of the MWP-assisted stepwise synthesis of II\[A using precursor I. The atoms are represented by polyhedra and spheres: C, black; N, light blue; O, red; Si, gray; W, light green; Fe, pink; Mn, purple; Lu, orange; Ag, green; Na, blue; and K, dark red. Color boxes represent stock solutions where pumps were controlled by Arduino Mega 2560/RAMPs boards via in house developed Python code.
equivalents of AOTf with respect to I was set to 1, 2, 3, 4, 5, and 6, resulting in 72 reaction conditions (Table S1). It should be noted that equivalents of AOTf are important parameters even in the MWP-assisted stepwise synthesis, because we cannot control the types of products and thus deduce the best synthesis conditions in unestablished procedures although three possible structures can be predicted ahead of time (Figures 2, S2). Then, the programmed MWP performed the following sequence with constant stirring: (1) addition of POM solution, (2) dilution with acetonitrile, (3) addition of AOTf solution, (4) dilution to final 2 mL of total volume with acetonitrile, (5) stirring for 4 h, and (6) addition of diethyl ether for the crystallization. Since the reaction vessels were arranged in a circle, each batch can be moved by rotating the circular platform to perform every reaction automatically (Figure 4). Notably, it took approximately only 60 min to finish all reaction conditions before the 4-h stirring step, and all we had to do was to push the enter key once, showing a drastic reduction of time and effort to explore large areas of reaction parameter space in an unestablished reaction step (Figure 2).

As a result, the MWP created many crystals although powder precipitations were obtained in most reactions containing ≥3 equivalents of metal cations, indicating that all of four vacant sites of I could not react with metal cations simultaneously, and cation exchange reactions with TBA+ might occur (Figure S4). In addition, when adding LiOTf, crystals could be obtained by only one reaction condition, and quality of crystals was too poor to reveal the crystal structure, indicating that ion radius of A+ was important factor to be installed into the ionic radius of A+ was important factor to be installed into the ionic radius of A+. The bond valence sum values indicate that the respective valences of W, Si, Fe, Mn, Lu, and A are +6, +4, +3, +3, +3, and +1 (Tables S3–S5). In IIAg, two [A(solvents)]+ units (solvents = CH3CN or C2H5OC2H5) were installed so as to bridge Lu3+ and the [A·SiW9O34]10– unit. Interestingly, one of the six-membered chelate rings of acac ligands coordinated to Lu3+ in IIAg stacked with the chelate ring of neighbor anion, resulting in the alignment of the anions in the same direction (Figures S6, S7). By installing the diamagnetic metal cations into I, the coordination geometries of {FeMn4}Lu3+ were slightly changed; an increase in Fe–O–Mn bond angles and a decrease in Mn–O–Mn bond angles were observed (Table S6). As the ionic radii of A+ became larger, the distances between A+ and the bridging oxygen atom of Mn–O–Mn became longer. The cold-spray ionization mass measurements of IIAg in acetonitrile supported that these structures were selectively synthesized (Figure S8). On the basis of all the above-mentioned results, elemental analyses, and thermogravimetric differential thermal analysis data, IIAg, IINa, and IIK were proposed to have formulas of TBA4[(A-α-SiW9O34)2FeMn4O2{Lu(acac)2}]2Ag2·4H2O·CH3CN, TBA1[(A-α-SiW9O34)2FeMn4O2{Lu(acac)2}2]2Na2·13H2O, and TBA1[(A-α-SiW9O34)2FeMn4O2{Lu(acac)2}]2K2·9H2O, respectively. These results clearly illustrated that the MWP-assisted screening successfully discovered three new heteromultinuclear metal oxo clusters as designed.

In order to investigate the magnetic properties of IIAg, magnetic susceptibility measurements were performed. The direct current magnetic susceptibilities of IIAg under 0.1 T showed the χT values of 10.80 (I), 11.54 (IIAg), 13.77 (IINa), and 12.23 cm3 K mol−1 (IIK) at 300 K, respectively (Figure S9). These values are significantly lower than the sum of the spin-only values of one high-spin Fe3+ and four high-spin Mn3+ (16.38 cm3 K mol−1), which is likely due to the antiferromagnetic interactions. The χT values of I gradually decreased with decreasing temperature, while those of IIAg gradually decreased with decreasing temperature and then increased below about 50 K, and reached to the values of 13.38 (IIAg, 2.9 K), 12.14 (IINa, 4.9 K), and 8.83 (IIK, 9.68 K) cm3 K mol−1, respectively. These results indicated that the spin ground states of IIAg were enhanced. The M vs H data showed that the magnetization saturated at values of 9.1 (IIAg), 7.2 (IINa), and 7.0 (IIK) NμB, also supporting the larger spin ground states of IIAg compared with that of I (2.8 NμB) (Figure S10).

The alternating current magnetic susceptibility measurements for IIAg showed considerable temperature and frequency-dependent χ′ and χ′′ even under a zero external dc field, indicating the slow relaxation of magnetization characteristic for SMMs (Figure 5a–c, S11). The Arrhenius plots showed that the values of Ueff in IIAg were 40.0 (IIAg), 40.3 (IINa), and 26.7 K (IIK), respectively (Figure 5d). By installing A+ into the {FeMn4}Lu3+ unit in I, the energy barriers of IIAg were doubled and significantly enhanced in comparison with that of I (Ueff = 19.7 K).26 It is noteworthy that the energy barrier of IIAg (Ueff = 40.3 K) is the highest among those of the previously reported transition metal-containing POMs (Table S7).9,13 In order to discover a SMM with high Ueff, scientists have been taken a lot of time and effort to synthesize molecular clusters under various synthesis conditions, while we could automati-
Figure 5. Frequency dependences of χ''/ω for (a) IIa^{15}, (b) IIa^{14}, and (c) IIa^{13} under zero external dc fields. (d) Plots of relaxation time (τ) versus T^{-1} for IIa^{14}. The solid lines represent the best fit with the Arrhenius law ($\ln \tau = A_0/\kappa_B T$) vs T^{-1} at the thermally activated regime.

finally find IIa^{14} by a simple robotic stepwise synthesis method even in an unestablished procedure.

CONCLUSION

In conclusion, the MWP-assisted stepwise synthesis successfully led to the discovery of three new POMs with high U_{diff} values. Importantly, the discoveries made in this study were achieved not by serendipitous molecular assembly using mononuclear metal sources but by a series of predictable sequential multistep reactions. The structure of the precursor I was maintained after the introduction of A^+, which enabled us to construct atomically designed heteromultinuclear metal clusters in a predictable way regardless of established or unestablished procedures. Therefore, it is our hope that the robotic stepwise synthesis strategy and the use of time and resource efficient automated platforms can be applied in various fields requiring precise structural arrangement of multinuclear metal oxo and metallic clusters, both to increase productivity and synthetic accuracy in these areas.

EXPERIMENTAL SECTION

Materials and Instruments. Acetonitrile (Kanto Chemical), diethyl ether (Kanto Chemical), 1,2-dichloroethane (Kanto Chemical), Mn(acac)$_3$ (TCI), Lu(acac)$_3$ (Aldrich), LiOTf (Alfa Aesar), NaOTf, (TCI and Alfa Aesar), KOTf (Kanto Chemical and Alfa Aesar), and AgOTf (Aldrich) were used as received. TBA$_4$(A-$\text{SiW}_9\text{O}_{34})_2\text{Fe}^{3+}$ was synthesized according to the reported procedure. TBA$_4$[(A-$\text{SiW}_9\text{O}_{34})_2\text{FeMnO}_{3}$(Lu(acac)$_3$)]$_2$ was synthesized according to the reported procedure but recrystallized directly from the synthetic solution by addition of diethyl ether. IR spectra were measured on JASCO FT/IR-4100 using KBr disks. Cold-spray ionization (CSI) mass spectra were recorded on JEOL JMS-T100CS. Electrospray ionization (ESI) mass spectra were recorded on Agilent 6230 TOF LC/MS. Thermogravimetric and differential thermal analyses (TG-DTA) were performed on Rigaku Thermo plus TG 8120. ICP-AES analyses for Fe, Mn, Lu, Ag, Si, and W were performed with Shimadzu ICPS-8100. Polarized Zeeman AAS analyses for Na and K were performed with Hitachi ZA3000. Elemental analyses were performed on Elemental vario MICRO cube.
Crystals of IINa. These data can be obtained after 1 day (25.6 mg, 53% yield based on μmol), NaOTf (2.4 mg, 13.9 μmol) was added, and the resulting solution was stirred for 4 h at room temperature (ca. 20 °C). Then, diethyl ether (2.1 mL) was added to the solution, and the solution was filtered off. The brown crystals of IIa are suitable for X-ray crystallographic analysis. The brown crystals of IIa are suitable for X-ray crystallographic analysis. The resulting solution was stirred for 4 h at room temperature (ca. 20 °C). Then, diethyl ether (2.1 mL) was added to the solution, and the solution was filtered off. The brown crystals of IIa are suitable for X-ray crystallographic analysis. The brown crystals of IIa are suitable for X-ray crystallographic analysis.

Synthesis and Characterization of TBAα-[A-[α-SiW9O34]2FeMn4O2{Lu(acac)2}2Na2]·13H2O (IIa). To an acetonitrile solution (1 mL) of (50.0 mg, 6.9 μmol), NaOTf (2.4 mg, 13.9 μmol) was added, and the resulting solution was stirred for 4 h at room temperature (ca. 20 °C). Then, diethyl ether (2.1 mL) was added to the solution, and the solution was filtered off. The brown crystals of IIa are suitable for X-ray crystallographic analysis. The brown crystals of IIa are suitable for X-ray crystallographic analysis.

Synthesis and Characterization of TBAβ-[A-[α-SiW9O34]2FeMn4O2{Lu(acac)2}2Na2]·13H2O (IIb). To an acetonitrile solution (1 mL) of (50.0 mg, 6.9 μmol), NaOTf (2.4 mg, 13.9 μmol) was added, and the resulting solution was stirred for 4 h at room temperature (ca. 20 °C). Then, diethyl ether (2.1 mL) was added to the solution, and the solution was filtered off. The brown crystals of IIa are suitable for X-ray crystallographic analysis. The brown crystals of IIa are suitable for X-ray crystallographic analysis.

(16) *CrystalStructure* 3.8, Rigaku and Rigaku/MSC, The Woodlands, TX.

